Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (11): 1547-1560.doi: https://doi.org/10.1007/s10483-019-2539-7
• Articles • Previous Articles Next Articles
H. KHAJEHSAEID, H. BAGHSHOMAL AZAR
Received:
2019-04-24
Revised:
2019-06-05
Online:
2019-11-01
Published:
2019-10-28
Contact:
H. KHAJEHSAEID
E-mail:khajehsaeid@tabrizu.ac.ir
Supported by:
2010 MSC Number:
H. KHAJEHSAEID, H. BAGHSHOMAL AZAR. Influence of stretch and temperature on the energy density of dielectric elastomer generators. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1547-1560.
[1] BAR-COHEN, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles:Reality, Potential, and Challenges, SPIE Press, Bellinham (2004) [2] CARPI, F., DE ROSSI, D., KORNBLUH, R., PELRINE, R. E., and SOMMER-LARSEN, P. Dielectric Elastomers as Electromechanical Transducers:Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, Elsevier, Wallinford (2011) [3] PELRINE, R., KORNBLUH, R. D., ECKERLE, J., JEUCK, P., OH, S., PEI, Q., and STANFORD, S. Dielectric elastomers:generator mode fundamentals and applications. Proceeding of SPIE-the International Society of Optical Engineering, 148-157(2001) [4] BROCHU, P. and PEI, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 31(1), 10-36(2010) [5] GIOUSOUF, M. and KOVACS, G. Dielectric elastomer actuators used for pneumatic valve technology. Smart Materials and Structures, 22(10), 104010(2013) [6] ZISER, Y. and SHMUEL, G. Experimental slowing of flexural waves in dielectric elastomer films by voltage. Mechanics Research Communications, 85, 64-68(2017) [7] ISKANDARANI, Y. H., JONES, R. W., and VILLUMSEN, E. Modeling and experimental verification of a dielectric polymer energy scavenging cycle. Electoactive Polymer Actuators and Devics, International Society for Optics and Photonics, 72871Y (2009) [8] CHAKRAVARTY, U. K. On the resonance frequencies of a membrane of a dielectric elastomer. Mechanics Research Communications, 55, 72-76(2014) [9] CHIBA, S., WAKI, M., KORNBLUH, R., and PELRINE, R. Innovative power generators for energy harvesting using electroactive polymer artificial muscles. Electroactive Polymer Actuators and Devices (EAPAD), International Society for Optics and Photonics, 692715(2008) [10] PLANTE, J. S. and DUBOWSKY, S. Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 43(25), 7727-7751(2006) [11] LIU, L., ZHANG, Z., LIU, Y., and LENG, J. Failure modeling of folded dielectric elastomer actuator. Science China Physics, Mechanics and Astronomy, 57(2), 263-272(2014) [12] LALLART, M., COTTINET, P. J., GUYOMAR, D., and LEBRUN, L. Electrostrictive polymers for mechanical energy harvesting. Journal of Polymer Science Part B:Polymer Physics, 50(8), 523-535(2012) [13] WANG, H., ZHU, Y., WANG, L., and ZHAO, J. Experimental investigation on energy conversion for dielectric electroactive polymer generator. Journal of Intelligent Material Systems and Structures, 23(8), 885-895(2012) [14] JEAN-MISTRAL, C., BASROUR, S., and CHAILLOUT, J. Modelling of dielectric polymers for energy scavenging applications. Smart Materials and Structures, 19(10), 105006(2010) [15] BINH, P. C., NAM, D. N. C., and AHN, K. K. Modeling and experimental analysis of an antagonistic energy conversion using dielectric electro-active polymers. Mechatronics, 24(8), 1166-1177(2014) [16] KOH, S. J. A., ZHAO, X., and SUO, Z. Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 94(26), 262902(2009) [17] KOH, S. J. A., KEPLINGER, C., LI, T., BAUER, S., and SUO, Z. Dielectric elastomer generators:how much energy can be converted? IEEE/ASME Transactions on Mechatronics, 16(1), 33-41(2011) [18] KHAJEHSAEID, H., NAGHDABADI, R., and SOHRABPOUR, S. Study of shape memory effect in NiMnGa magnetic shape memory alloy single crystals by incremental modeling. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers, 441-446(2010) [19] FADAIEPOUR, A., KHAJEHSAEID, H., and GHANBARI, A. Design and modeling of artificial arm muscle using shape memory alloys. Modares Mechanical Engineering, 17(10), 29-38(2017) [20] LIU, Y., LIU, L., ZHANG, Z., JIAO, Y., SUN, S., and LENG, J. Analysis and manufacture of an energy harvester based on a Mooney-Rivlin type dielectric elastomer. Europhysics Letters, 90(3), 36004(2010) [21] CHIANG FOO, C., CAI, S., JIN ADRIAN KOH, S., BAUER, S., and SUO, Z. Model of dissipative dielectric elastomers. Journal of Applied Physics, 111(3), 034102(2012) [22] CHIANG FOO, C., JIN ADRIAN KOH, S., KEPLINGER, C., KALTSEIS, R., BAUER, S., and SUO, Z. Performance of dissipative dielectric elastomer generators. Journal of Applied Physics, 111(9), 094107(2012) [23] KALTSEIS, R., KEPLINGER, C., BAUMGARTNER, R., KALTENBRUNNER, M., LI, T., MÄHLER, P., SCHWÖIAUER, R., SUO, Z., and BAUER, S. Method for measuring energy generation and efficiency of dielectric elastomer generators. Applied Physics Letters, 99(16), 162904(2011) [24] ZHAO, X. and WANG, Q. Harnessing large deformation and instabilities of soft dielectrics:theory, experiment, and application. Applied Physics Reviews, 1(2), 021304(2014) [25] HUANG, J., SHIAN, S., SUO, Z., and CLARKE, D. R. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Advanced Functional Materials, 23(40), 5056-5061(2013) [26] LU, T. Q. and SUO, Z. G. Large conversion of energy in dielectric elastomers by electromechanical phase transition. Acta Mechanica Sinica, 28(4), 1106-1114(2012) [27] SHENG, J., CHEN, H., and LI, B. Effect of temperature on the stability of dielectric elastomers. Journal of Physics D:Applied Physics, 44(36), 365406(2011) [28] KHAJEHSAEID, H., NAGHDABADI, R., and ARGHAVANI, J. A strain energy function for rubber-like materials. Constitutive Models for Rubber, 205-210(2013) [29] KHAJEHSAEID, H., ARGHAVANI, J., and NAGHDABADI, R. A hyperelastic constitutive model for rubber-like materials. European Journal of Mechanics, A/Solids, 38, 144-151(2013) [30] KHAJEHSAEID, H., ARGHAVANI, J., NAGHDABADI, R., and SOHRABPOUR, S. A viscohyperelastic constitutive model for rubber-like materials:a rate-dependent relaxation time scheme. International Journal of Engineering Science, 79, 44-58(2014) [31] JIANG, B. Effect of the microstructure of a filled rubber on its overall mechanical properties. Acta Mechanica, 225(4), 1121-1140(2014) [32] KHAJEHSAEID, H. Application of fractional time derivatives in modeling the finite deformation viscoelastic behavior of carbon-black filled NR and SBR. Polymer Testing, 68, 110-115(2018) [33] HART-SMITH, L. J. Elasticity parameters for finite deformations of rubber-like materials. Zeitschrift für Angewandte Mathematik und Physik, 17(5), 608-626(1966) [34] OGDEN, R. W. Large deformation isotropic elasticity:on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A, 326(1567), 565-584(1972) [35] OGDEN, R., SACCOMANDI, G., and SGURA, I. Fitting hyperelastic models to experimental data. Computational Mechanics, 34(6), 484-502(2004) [36] KHAJEHSAEID, H., BAGHANI, M., and NAGHDABADI, R. Finite strain numerical analysis of elastomeric bushings under multi-axial loadings:a compressible visco-hyperelastic approach. International Journal of Mechanics and Materials in Design, 9(4), 1-15(2013) [37] KHAJEHSAEID, H. Development of a network alteration theory for the Mullins-softening of filled elastomers based on the morphology of filler-chain interactions. International Journal of Solids and Structures, 80, 158-167(2016) [38] KHAJEHSAEID, H. and RAMEZANI, M. A. Visco-hyperelastic modeling of automotive elastomeric bushings with emphasis on the coupling effect of axial and torsional deformations. Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, Purdue University Libraries Scholarly Publishing Services (2014) [39] PATRA, K. and SAHU, R. K. A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. International Journal of Mechanics and Materials in Design, 11(1), 79-90(2015) [40] HORGAN, C. O., OGDEN, R. W., and SACCOMANDI, G. A theory of stress softening of elastomers based on finite chain extensibility. Proceedings of the Royal Society A, 460(2046), 1737-1754(2004) [41] KHAJEHSAEID, H. Mullins thresholds in context of the network alteration theories. International Journal of Mechanical Sciences, 123, 43-53(2017) [42] COLONNELLI, S., SACCOMANDI, G., and ZURLO, G. The role of material behavior in the performances of electroactive polymer energy harvesters. Journal of Polymer Science Part B:Polymer Physics, 53(18), 1303-1314(2015) [43] KALTSEIS, R., KEPLINGER, C., KOH, S. J. A., BAUMGARTNER, R., GOH, Y. F., NG, W. H., KOGLER, A., TRÖS, A., FOO, C. C., and SUO, Z. Natural rubber for sustainable high-power electrical energy generation. RSC Advances, 4(53), 27905-27913(2014) [44] LU, T., HUANG, J., JORDI, C., KOVACS, G., HUANG, R., CLARKE, D. R., and SUO, Z. Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter, 8(22), 6167-6173(2012) [45] TRÖS, A., KOGLER, A., BAUMGARTNER, R., KALTSEIS, R., KEPLINGER, C., SCHWÖIAUER, R., GRAZ, I., and BAUER, S. Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers. Smart Materials and Structures, 22(10), 104012(2013) [46] LI, B., CHEN, H., QIANG, J., and ZHOU, J. A model for conditional polarization of the actuation enhancement of a dielectric elastomer. Soft Matter, 8(2), 311-317(2012) [47] SHENG, J., CHEN, H., LI, B., and CHANG, L. Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Applied Physics A, 110(2), 511-515(2013) [48] VU-CONG, T., JEAN-MISTRAL, C., and SYLVESTRE, A. New operating limits for applications with electroactive elastomer:effect of the drift of the dielectric permittivity and the electrical breakdown. Journal of Political Economy, International Society for Optics and Photonics, 86871S (2013) [49] ZHAO, X. and SUO, Z. Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 91(6), 061921(2007) [50] NORRIS, A. Comment on "Method to analyze electromechanical stability of dielectric elastomers". Applied Physics Letters, 92(2), 026101(2008) [51] JIANG, L., BETTS, A., KENNEDY, D., and JERRAMS, S. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch. Journal of Physics D:Applied Physics, 49(26), 265401(2016) [52] JEAN-MISTRAL, C., SYLVESTRE, A., BASROUR, S., and CHAILLOUT, J. Dielectric properties of polyacrylate thick films used in sensors and actuators. Smart Materials and Structures, 19(7), 075019(2010) [53] KHAJEHSAEID, H., REESE, S., ARGHAVANI, J., and NAGHDABADI, R. Strain and stress concentrations in elastomers at finite deformations:effects of strain-induced crystallization, filler reinforcement, and deformation rate. Acta Mechanica, 227(7), 1969-1982(2016) [54] KHAJEHSAEID, H. and REESE, S. Effects of strain-induced crystalization and filler reinforcement on strain and stress concentrations in elastomers at finite deformations. Constitutive Models for Rubber IX, 603-608(2015) |
[1] | Yang XIONG, Bo LU, Yicheng SONG, Junqian ZHANG. Analysis of thermal management and anti-mechanical abuse of multi-functional battery modules based on magneto-sensitive shear thickening fluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 529-542. |
[2] | Haiyang WU, Jiangfeng LOU, Biao ZHANG, Yuntong DAI, Kai LI. Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 337-354. |
[3] | Shuangpeng LI, Ruoran CHENG, Nannan MA, Chunli ZHANG. Analysis of piezoelectric semiconductor fibers under gradient temperature changes [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 311-320. |
[4] | A. RAHMANI, S. FAROUGHI, M. SARI. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1577-1596. |
[5] | Shengyi TANG, Xubin PENG, Huadong YONG. Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1511-1532. |
[6] | Xiang KANG, Yujin TONG, Wei WU, Xingzhe WANG. Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 255-272. |
[7] | J. R. FERNÁNDEZ, R. QUINTANILLA. A higher-order porous thermoelastic problem with microtemperatures [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1911-1926. |
[8] | Xiaokang DU, Yuanzhao CHEN, Jing ZHANG, Xian GUO, Liang LI, Dingguo ZHANG. Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 125-140. |
[9] | Yongqiang LIU, Baosen WANG, Shaopu YANG, Yingying LIAO, Tao GUO. Characteristic analysis of mechanical thermal coupling model for bearing rotor system of high-speed train [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1381-1398. |
[10] | Yunfei LIU, Jun WANG, Jiaxin HU, Zhaoye QIN, Fulei CHU. Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1543-1554. |
[11] | Weipeng HU, Zhen WANG, Yulu HUAI, Xiqiao FENG, Wenqi SONG, Zichen DENG. Effects of temperature change on the rheological property of modified multiwall carbon nanotubes [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1503-1514. |
[12] | A. M. ALHARBI, M. I. A. OTHMAN, H. M. ATEF. Thomson effect with hyperbolic two-temperature on magneto-thermo-visco-elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1311-1326. |
[13] | Zhao ZHAO, Yuhang LI, Sujun DONG, Yi CUI, Zheng DAI. An analytic model for transient heat conduction in bi-layered structures with flexible serpentine heaters [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1279-1296. |
[14] | F. MABOOD, J. MACKOLIL, B. MAHANTHESH, A. RAUF, S. A. SHEHZAD. Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1247-1258. |
[15] | Tianyong YANG, Bofu WANG, Jianzhao WU, Zhiming LU, Quan ZHOU. Horizontal convection in a rectangular enclosure driven by a linear temperature profile [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1183-1190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||