[1] BIOT, M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27, 240-253(1956) [2] LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermo-elasticity. Journal of the Mechanics and Physics of Solids, 15, 299-309(1967) [3] ABD-ALLA, A. M., OTHMAN, M. I. A., and ABO-DAHAB, S. M. Reflection of plane waves from electro-magneto-thermoelastic half-space with a dual-phase-lag model. Computers, Materials & Continua, 51(2), 63-79(2016) [4] OTHMAN, M. I. A. and MARIN, M. Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory. Results in Physics, 7, 3863-3872(2017) [5] ILIOUSHIN, A. A. and POBEDRIA, B. E. Fundamentals of the Mathematical Theories of Thermal Viscoelasticity, Nauka, Moscow (1970) [6] TANNER, R. I. Engineering Rheology, Oxford University Press, Oxford University (1988) [7] WATSON, S. J. Unique Global solvability for initial-boundary value problems in one-dimensional nonlinear thermo-visco-elasticity. Archive for Rational Mechanics and Analysis, 153(1), 1-37(2000) [8] OTHMAN, M. I. A. and FEKRY, M. Effect of magnetic field on generalized thermo-viscoelastic diffusion medium with voids. International Journal of Structural Stability & Dynamics, 16(7), 1550033(2016) [9] EL-SHERIF, S. F. M., ISMAIL, M. A., EL-BARY, A. A., and ATEF, H. M. Effect of magnetic field on thermos:viscoelastic cylinder subjected to a constant thermal shock. International Journal of Advanced and Applied Sciences, 7(1), 117-124(2020) [10] OTHMAN, M. I. A. and FEKRY, M. Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids. Multidisciplinary Modeling in Materials and Structures, 14(2), 322-338(2018) [11] OTHMAN, M. I. A., FEKRY, M., and MARIN, M. Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Structural Engineering and Mechanics, 73(6), 621-629(2020) [12] CHEN, P. J. and GURTIN, M. E. On a theory of heat conduction involving two temperatures. Zeitschrift für Angewandte Mathematik und Physics, 19, 614-627(1968) [13] BOLEY, B. A. and TOLINS, I. S. Transient coupled thermoplastic boundary value problems in the half-space. Journal of Applied Mechanics, 29, 637-646(1962) [14] CHEN, Q. G., SECCHI, P., and WANG, T. Stability of multidimensional thermoelastic contact discontinuities. Archive for Rational Mechanics and Analysis, 237, 1271-1323(2020) [15] YOUSSEF, H. M. and EL-BARY, A. A. Theory of hyperbolic two-temperature generalized thermoelasticity. Materials Physics and Mechanics, 40, 158-171(2018) [16] HETNARSKI, R. B. Thermal Stresses I, 2nd series, vol. 1, North-Holland, Amsterdam (1986) [17] NOLAS, G. S., JOHNSON, D., and MANDRUS, D. G. Thermoelectric materials and devices. Materials Research Society, Warrendale, PA, 691(2002) [18] MEHDITABAR, A., RAHIMI, G. H., and SADRABADI, S. A. Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell. Applied Mathematics and Mechanics (English Edition), 38(4), 479-494(2017) https://doi.org/10.1007/s10483-017-2186-6 [19] SAID, S. M. Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity. Applied Mathematics and Mechanics (English Edition), 41(5), 819-832(2020) https://doi.org/10.1007/s10483-020-2603-9 [20] CHRISTOFOROU, C. and TZAVARAS, A. E. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermo-visco-elasticity. Archive for Rational Mechanics and Analysis, 229, 1-52(2018) [21] LYU, Q., LI, J., and ZHANG, N., Quasi-static and dynamical analyses of a thermovisco-elastic Timoshenko beam using the differential quadrature method. Applied Mathematics and Mechanics (English Edition), 40(4), 549-562(2019) https://doi.org/10.1007/s10483-019-2470-8 [22] ROGERS, R. C. and ANTMAN, S. S. Steady-state problems of nonlinear electro-magneto-thermoelasticity. Archive of Rational Mechanics and Analysis, 95, 279-321(1986) [23] LOTFY, K. H., KHAMIS, A. K., EL-BARY, A. A., and Ahmed, M. H. Thomson and rotation effects during photothermal excitation process in magnetic semi-conductor medium using variable thermal conductivity. Applied Mathematics and Mechanics (English Edition), 41(6), 909-926(2020) https://doi.org/10.1007/s10483-020-2613-9 [24] KHAN, A. A., USMAN, H., VAFAI, K., and ELLAHI, R. Study of peristaltic flow of magneto-hydro-dynamics Walter's B fluid with slip and heat transfer. Scientia Iranica B, 23(6), 2650-2662(2016) [25] ELLAHI, R., ZEESHAN, A., HUSSAIN, F. and ABBAS, T., Two-phase couette flow of couple stress fluid with temperature dependent viscosity thermally affected by magnetized moving surface. Symmetry, 11(5), 647-660(2019) [26] KHAN, A. A., BUKHARI, S. R., MARIN, M., and ELLAHI, R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11), 1061-1080(2019) [27] SAEED, T., ABBAS, I. A., and MARIN, M. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry, 12(3), 1-24(2020) [28] MORELLI, D. T. Thermoelectric devices. Encyclopedia of Applied Physics, 21, 339-353(2003) [29] ROWE, D. M. CRC Handbook of Thermoelectrics, CRC Press, Boca Raton (1995) [30] OTHMAN, M. I. A., HASONA, W. M., and MANSOUR, N. T. The influence of gravitational field on generalized thermoelasticity with two-temperature under three-phase-lag model. Computers, Materials & Continua, 45(3), 203-219(2015) [31] ABD-ELAZIZ, E. M., MARIN, M., and OTHMAN, M. I. A. On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electro-magnetic theory. Symmetry, in Applied Continuous Mechanics, 11(3), 413-430(2019) |