[1] MADIGAN, M. T., BENDER, K. S., BUCKLEY, D. H., SATTLEY, W. M., and STAGK, D. A. Brock Biology of Microorganisms (15th Edition), Pearson, London (2018) [2] ASGHAR, Z., SHAH, R. A., and ALI, N. A computational approach to model gliding motion of an organism on a sticky slime layer over a solid substrate. Biomechanics and Modeling in Mechanobiology, 21, 1441-1455(2022) [3] ASGHAR, Z., ALI, N., and SAJID, M. Interaction of gliding motion of bacteria with rheological properties of the slime. Mathematical Biosciences, 290, 31-40(2017) [4] KYZAS, G. Z. and MITROPOULOS, A. C. Novel Nanomaterials--Synthesis and Applications, InTech, London, United Kingdom (2018) [5] COSTERTON, J. W., MURRAY, R. G. E., and RABINO, C. F. Observations on the motility and the structure of vitreoscilla. Canadian Journal of Microbiology, 7, 329-339(1961) [6] HALFEN, L. N. and CASTENHOLZ, R. W. Gliding in the blue-green alga: a possible mechanism. nature, 225, 1163-1165(1970) [7] HALFEN, L. N. and CASTENHOLZ, R. W. Gliding in the blue-green alga. Journal of Phycology, 7, 133-144(1971) [8] HUMPHREY, B. A., DICKSON, M. R., and MARSHALL, K. C. Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Archives of Microbiology, 120, 231-238(1979) [9] READ, N., CONNELL, S., and ADAMS, D. G. Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility. Journal of Bacteriology, 189, 7361-7366(2007) [10] HOICZYK, E. Gliding motility in cyanobacteria: observations and possible explanations. Archives of Microbiology, 174, 11-17(2000) [11] RIDGWAY, H. F. and LEWIN, R. A. Characterization of gliding motility in flexibacter polymorphus. Cell Motility and the Cytoskeleton, 11, 46-63(1988) [12] BURCHARD, A. C., BURCHARD, R. P., and KLOETZEL, J. A. Intracellular, periodic structures in the gliding bacterium myxococcus xanthus. Journal of Bacteriology, 132, 666-672(1977) [13] DICKSON, M. R., KOUPRACH, S., HUMPHREY, B. A., and MARSHALL, K. C. Does gliding motility depend on undulating membranes? Micron, 11, 381-382(1980) [14] O'BRIEN, R. W. The gliding motion of a bacterium, flexibactor strain BH 3. The Journal of the Australian Mathematical Society Series B: Applied Mathematics, 23, 2-16(1981) [15] LAPIDUS, I. R. and BERG, H. C. Gliding motility of cytophaga sp. strain U67. Journal of Bacteriology, 151, 384-398(1982) [16] VENKATARAJ, S., KAPPERTZ, O., WWEIS, H., DRESE, R., JAYAVEL, R., and WUTTIG, M. Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. Journal of Applied Physics, 92, 3599-3607(2002) [17] GAO, P., MENG, L. J., SANTOS, M. P., TEIXEIRA, V., and ANDRITSCHKY, M. Characterisation of ZrO2 films prepared by rf reactive sputtering at different O2 concentrations in the sputtering gases. Vacuum, 56, 143-148(2000) [18] PETIT, M. and MONOT, J. Functionalization of Zirconium Oxide Surfaces, John Wiley, New Jersey, 168-199(2015) [19] MOHANTY, U. S., AWAN, F. U., ALI, M., AFTAB, A., KESHAVARZ, A., and IGLAUER, S. Physicochemical characterization of zirconia nanoparticle-based sodium alginate polymer suspension for enhanced oil recovery. Energy and Fuels, 35, 19389-19398(2021) [20] BARAI, R. M., KUMAR, D., WANKHADE, A. V., SAYED, A. R., and JUNANKAR, A. A. Experimental study of thermal characteristics of ZrO2/EG nanofluid for application of heat transfer. Environmental Science and Pollution Research, 30, 25523-25531(2023) [21] LEONETTI, B. Mesoporous Zirconia Nanoparticles for Biomedical Applications: Characterization, Functionalization and Case Studies as Antibiofouling Agents, Ph.D. dissertation, Ca' Foscari University of Venice, 851554(2017) [22] ALZANBAQI, S. D., ALOGAIEL, R. M., ALASMARI, M. A., Al-ESSA, A. M., KHOGEER, L. N., ALANAZI, B. S., HAWSAH, E. S., SHAIKH, A. M., and IBRAHIM, M. S. Zirconia crowns for primary teeth: a systematic review and meta-analyses. International Journal of Environmental Research and Public Health, 19, 2-18(2022) [23] BALAJI, S. and SHANMUGAM, V. K. Enhanced antibiofilm activity of endophytic bacteria bediated zirconium nanoparticles. Biointerface Research in Applied Chemistry, 12, 74-82(2021) [24] MEHDIKHANI, H., AQABABA, H., and SADEGHI, L. Effect of zirconium oxide nanoparticle on serum level of testosterone and spermatogenesis in the rat: an experimental study. International Journal of Reproductive BioMedicine, 18, 765-776(2020) [25] ABDELSALAM, S. I., MEKHEIMER, K. S., and ZAHER, A. Z. Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal channels. Waves in Random and Complex Media, 4, 1-22(2022) [26] ABDELSALAM, S. I., VELASCO-HERNÁNDEZ, J. X., and ZAHER, A. Z. Electro-magnetically modulated self-propulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20, 861-878(2021) [27] ZAHER, A. Z., MOAWAD, A. M. A., MEKHEIMER, K. S., and BHATTI, M. M. Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation. Biomechanics and Modeling in Mechanobiology, 20, 1-22(2021) [28] MEKHEIMER, K. S., SHAHZADI, I., NADEEM, S., MOAWAD, A. M. A., and ZAHER, A. Z. Reactivity of bifurcation angle and electroosmosis flow for hemodynamic flow through aortic bifurcation and stenotic wall with heat transfer. Physica Scripta, 96, 015216(2021) [29] ABDELSALAM, S. I., MEKHEIMER, K. S., and ZAHER, A. Z. Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chinese Journal of Physics, 67, 314-329(2020) [30] ZAHER, A. Z., ALI, K. K., and MEKHEIMER, K. S. Electroosmosis forces EOF driven boundary layer flow for a non-Newtonian fluid with planktonic microorganism: Darcy Forchheimer model. International Journal of Numerical Methods for Heat & Fluid Flow, 31, 2534-2559(2021) [31] ELDABE, N. T., GABR, M. E., ZAHER, A. Z., and ZAHER, S. A. The effect of Joule heating and viscous dissipation on the boundary layer flow of a magnetohydrodynamics micropolar-nanofluid over a stretching vertical Riga plate. Heat Transfer, 50, 4788-4805(2021) [32] ABDELSALAM, S. I., VELASCO-HERNÁNDEZ, J. X., and ZAHER, A. Z. Electromagnetically modulated self-propulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20, 861-878(2021) [33] ABDELSALAM, S. I. and ZAHER, A. Z. Leveraging elasticity to uncover the role of Rabinowitsch suspension through a wavelike conduit: consolidated blood suspension application. Mathematics, 19, 1-25(2021) |