[1] VAN MANEN, T., JANBAZ, S., and ZADPOOR, A. A. Programming the shape-shifting of flat soft matter. Materials Today, 21(2), 144–163(2018) [2] DANESCU, A. and IONESCU, I. R. Shell design from planar pre-stressed structures. Mathematics and Mechanics of Solids, 25(6), 1247–1266(2020) [3] RIVERA-TARAZONA, L. K., BHAT, V. D., KIM, H., CAMPBELL, Z. T., and WARE, T. H. Shape-morphing living composites. Science Advances, 6(3), eaax8582(2020) [4] DE HAAN, L. T., VERJANS, J. M. N., BROER, D. J., BASTIAANSEN, C. W., and SCHENNING, A. P. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. Journal of the American Chemical Society, 136(30), 10585–10588(2014) [5] CHEN, Z., HUANG, G. S., TRASE, I., HAN, X. M., and MEI, Y. F. Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting. Physical Review Applied, 5, 017001(2016) [6] SONG, J. J., FENG, Y. X., WANG, Y., ZENG, S. Y., HONG, Z. X., QIU, H., and TAN, J. R. Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model. Applied Mathematics and Mechanics (English Edition), 42(11), 1619–1632(2021) https://doi.org/10.1007/s10483-021-2988-9 [7] KIM, J., HANNA, J. A., BYUN, M., SANTANGELO, C. D., and HAYWARD, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science, 335(6073), 1201–1205(2012) [8] WU, Z. L., MOSHE, M., GREENER, J., THERIEN-AUBIN, H., NIE, Z., SHARON, E., and KUMACHEVA, E. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 4, 1586(2013) [9] SUN, W. J., MA, W. T., ZHANG, F., HONG, W., and LI, B. Snap-through path in a bistable dielectric elastomer actuator. Applied Mathematics and Mechanics (English Edition), 43(8), 1159–1170(2022) https://doi.org/10.1007/s10483-022-2888-6 [10] OHM, C., BREHMER, M., and ZENTAL, R. Liquid crystalline elastomers as actuators and sensors. Advanced Materials, 22(31), 3366–3387(2010) [11] FINKELMANN, H., NISHIKAWA, E., PEREIRA, G. G., and WARNER, M. A new optomechanical effect in solids. Physical Review Letters, 87(1), 015501(2001) [12] HOGAN, P. M., TAJBAKHSH, A. R., and TERENTJEV E. M. UV manipulation of order and macroscopic shape in nematic elastomers. Physical Review E, 65(4), 041720(2002) [13] VAN OOSTEN, C. L., HARRIS, K. D., BASTIAANSEN, C. W. M., and BROER, D. J. Glassy photomechanical liquid-crystal network actuators for microscale devices. The European Physical Journal E, 23(3), 329–336(2007) [14] WARE, T. H., MCCONNEY, M. E., WIE, J. J., TONDIGLIA, V. P., and WHITE, T. J. Voxelated liquid crystal elastomers. Science, 347(6225), 982–984(2015) [15] DE HAAN, L.T., SANCHEZ-SOMOLINOS, C., BASTIAANSEN, C. M. W., SCHENNING, A. P. H. J., and BROER, D. J. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angewandte Chemie International Edition, 124(50), 12637–12640(2012) [16] AHARONI, H., SHARON, E., and KUPFERMAN, R. Geometry of thin nematic elastomer sheets. Physical Review Letters, 113(25), 257801(2014) [17] MODES, C. and WARNER, M. Shape-programmable materials. Physics Today, 69(1), 32–38(2016) [18] MOSTAJERAN, C., WARNER, M., WARE, T. H., and WHITE, T. J. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189), 20160112(2016) [19] PLUCINSKY, P., LEMM, M., and BHATTACHARYA, K. Programming complex shapes in thin nematic elastomer and glass sheets. Physical Review E, 94, 010701(2016) [20] HE, L. H., ZHENG, Y., and NI, Y. Programmed shape of glassy nematic sheets with varying inplane director fields: a kinetics approach. International Journal of Solids and Structures, 130-131, 183–189(2017) [21] WARNER, M. Topographic mechanics and applications of liquid crystalline solids. Annual Review of Condensed Matter Physics, 11, 125–145(2020) [22] HAUSER, A. W., LIU, D. Q., BRYSON, K. C., HAYWARD, R. C., and BROER, D. J. Reconfiguring nanocomposite liquid crystal polymer films with visible light. Macromolecules, 49, 1575–1581(2016) [23] FU, C. B., XU, F., and HUO, Y. Z. Photo-controlle d patterne d wrinkling of liquid crystalline polymer films on compliant substrates. International Journal of Solids and Structures, 132-133, 264–277(2018) [24] ZHAO, S. C., XU, F., FU, C. B., and HUO, Y. Z. Controllable wrinkling patterns on liquid crystal polymer film/substrate systems by laser illumination. Extreme Mechanics Letters, 30, 100502(2019) [25] MODES, C. D. and WARNER, M. Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. Physical Review E, 84(2), 021711(2011) [26] HE, L. H. and XIA, S. The shape of a photo-actuated pyramidal cone. ASME Journal of Applied Mechanics, 87(2), 021009(2020) [27] MOSHE, M., SHARON, F., and KAUFERMAN, R. Pattern selection and multiscale behavior in metrically discontinuous non-Euclidean plates. Nonlinearity, 26, 3247–3258(2013) [28] JIANG, X. F., XU, E. L., WU, G. G., and LI, H. Z. Drop impact on superhydrophobic surface with protrusions. Chemical Engineering Science, 212, 115351(2020) [29] FENG, X. M., FAN, D. L., TIAN, G. Z., and ZHANG, S. S. Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin. ACS Applied Materials and Interfaces, 14(28), 32747–32760(2022) [30] MODES, C. D., WARNER, M., VAN OOSTEN, C. L., and CORBETT, D. Anisotropic response of glassy splay-bend and twist nematic cantilevers to light and heat. Physical Review E, 82, 041111(2010) [31] LANDAU, L. D. and LIFCHITZ, E. Theory of Elasticity, Foreign Languages Publishing House, Moscow (1991) [32] CHEN, L. Q. and SHEN, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Computer Physics Communications, 108(2), 147–158(1998) |