[1] ROYCHOWDHURY, S., GHOSH, T., ARORA, R., SAMANTA, M., XIE, L., SINGH, N. K., SONI, A., HE, J., WAGHMARE, U. V., and BISWAS, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science, 371, 722–727(2021) [2] MENG, J. H., WANG, X. D., and ZHANG, X. X. Transient modeling and dynamic characteristics of thermoelectric cooler. Applied Energy, 108, 340–348(2013) [3] HUANG, M. J., CHOU, P. K., and LIN, M. C. An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. Journal of Thermal Stresses, 31, 438–454(2008) [4] JIANG, B., YU, Y., CUI, J., LIU, X., XIE, L., LIAO, J., ZHANG, Q., HUANG, Y., NING, S., JIA, B., ZHU, B., BAI, S., CHEN, L., PENNYCOOK, S. J., and HE, J. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 371, 830–834(2021) [5] LIU, L. A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites. International Journal of Engineering Science, 55, 35–53(2012) [6] LIU, Y., WANG, K. F., and WANG, B. L. Instability-induced wrinkling in thermoelectric thin film/substrate structures for thermal protection systems in supersonic space shuttle applications. Mechanics of Advanced Materials and Structures, 27, 455–461(2018) [7] ZHOU, Y. T., TIAN, X. J., and LI, F. J. On coupling contact analysis of thermoelectric materials. Applied Mathematical Modelling, 89, 1459–1474(2021) [8] WANG, Y. Z. Effective material properties of thermoelectric composites with elliptical fibers. Applied Physics A, 119, 1081–1085(2015) [9] ZHANG, A. B. and WANG, B. L. Crack tip field in thermoelectric media. Theoretical and Applied Fracture Mechanics, 66, 33–36(2013) [10] SONG, H. P., GAO, C. F., and LI, J. Two-dimensional problem of a crack in thermoelectric materials. Journal of Thermal Stresses, 38, 325–337(2015) [11] WANG, B. L., GUO, Y. B., and ZHANG, C. W. Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material. Engineering Fracture Mechanics, 152, 1–9(2016) [12] LIU, Y., WANG, K. F., and WANG, B. L. Mechanics modeling of dynamic characteristics of laminated thermoelectric cylindrical shells. Applied Thermal Engineering, 136, 730–739(2018) [13] TIAN, X., ZHOU, Y., and DING, S. The effectiveness of the bonding layer to attain reliable thermoelectric structures. European Journal of Mechanics-A/Solids, 93, 104513(2022) [14] VENKATASUBRAMANIAN, R., SIIVOLA, E., COLPITTS, T., and O’QUINN, B. Thin-film thermoelectric devices with high room-temperature figures of merit. nature, 413, 597–602(2001) [15] JIN, Z. H. Buckling of thin film thermoelectrics. International Journal of Fracture, 180, 129–136(2012) [16] JIN, Z. H. Thermal stresses in a multilayered thin film thermoelectric structure. Microelectronics Reliability, 54, 1363–1368(2014) [17] KIM, J. A., LEE, S. K., and YOON, S. G. Thermoelectric property of Fe3O4 thin films grown onto the SiO2(250 nm)/Si and c-Al2O3(0001) substrate at 573 K using pulsed laser deposition. Sensors and Actuators B: Chemical, 204, 622–628(2014) [18] LIU, Y., WANG, B. L., and ZHANG, C. Thermoelastic behavior of a thermoelectric thin-film attached to an infinite elastic substrate. Philosophical Magazine, 97, 43–57(2016) [19] LIU, Y., WANG, B. L., and ZHANG, C. Mechanical model for a thermoelectric thin film bonded to an elastic infinite substrate. Mechanics of Materials, 114, 88–96(2017) [20] CUI, Y. J., WANG, K. F., WANG, B. L., and WANG, P. Analysis of thermally induced delamination of thermoelectric thin film/substrate system. International Journal of Fracture, 214, 201–208(2018) [21] CUI, Y. J., WANG, B. L., and WANG, K. F. Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate. Energy, 229, 120694(2021) [22] ZHOU, Y. T., TIAN, X. J., and DING, S. H. Microstructure size-dependent contact behavior of a thermoelectric film bonded to an elastic substrate with couple stress theory. International Journal of Solids and Structures, 256, 111982(2022) [23] LI, D., CHEN, P., HUANG, Z., LIU, H., and CHEN, S. The interfacial behavior of a thermoelectric thin-film bonded to an orthotropic substrate. International Journal of Solids and Structures, 267, 112160(2023) [24] SURESH, S. Graded materials for resistance to contact deformation and damage. Science, 292, 2447–2451(2001) [25] GULER, M. A. and ERDOGAN, F. Contact mechanics of graded coatings. International Journal of Solids and Structures, 41, 3865–3889(2004) [26] KE, L. L. and WANG, Y. S. Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures, 43, 5779–5798(2006) [27] LIU, T. J., WANG, Y. S., and XING, Y. M. Fretting contact of two elastic solids with graded coatings under torsion. International Journal of Solids and Structures, 49, 1283–1293(2012) [28] MEHTA, A., VASUDEV, H., SINGH, S., PRAKASH, C., SAXENA, K. K., LINUL, E., BUDDHI, D., and XU, J. Processing and advancements in the development of thermal barrier coatings: a review. Coatings, 12, 1318(2022) [29] TIAN, X., ZHOU, Y., and ZHANG, C. On the imperfect interface of a functionally graded thermoelectric layered structure. Composite Structures, 322, 117394(2023) [30] SURESH, S., OLSSON, M., GIANNAKOPOULOS, A. E., PADTURE, N. P., and JITCHAROEN, J. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surface. Acta Materialia, 47, 3915–3926(1999) [31] CHEN, P. and CHEN, S. Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. International Journal of Solids and Structures, 50, 1108–1119(2013) [32] PENG, J., WANG, Z., CHEN, P., GAO, F., CHEN, Z., and YANG, Y. Surface contact behavior of an arbitrarily oriented graded substrate with a spatially varying friction coefficient. International Journal of Mechanical Sciences, 151, 410–423(2019) [33] PÉREZ-APARICIO, J. L., TAYLOR, R. L., and GAVELA, D. Finite element analysis of nonlinear fully coupled thermoelectric materials. Computational Mechanics, 40, 35–45(2006) [34] CUI, Y. J., WANG, K. F., WANG, B. L., LI, J. E., and ZHOU, J. Y. A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties. Composite Structures, 229, 111484(2019) [35] CUI, Y. J., WANG, B. L., WANG, K. F., and ZHENG, L. Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting. International Journal of Heat and Mass Transfer, 137, 979–989(2019) [36] CUI, Y. J., WANG, B. L., LI, J. E., and WANG, K. F. Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system. Energy Conversion and Management, 211, 112744(2020) [37] LIU, Y., WANG, B. L., and ZHANG, C. Thermoelastic behavior of a thermoelectric thin-film attached to an infinite elastic substrate. Philosophical Magazine, 97, 43–57(2017) [38] GULER, M. A. Mechanical modeling of thin films and cover plates bonded to graded substrates. Journal of Applied Mechanics — Transactions of the ASME, 75, 051105(2008) [39] CUI, Y. J., WANG, B. L., WANG, K. F., and LI, J. E. Fracture mechanics analysis of delamination buckling of a porous ceramic foam coating from elastic substrates. Ceramics International, 44, 17986–17991(2018) [40] CUI, Y. J., LI, J. E., WANG, B. L., and WANG, K. F. Thermally induced delamination and buckling of a ceramic coating with temperature-dependent material properties from porous substrate at high temperatures. Acta Mechanica, 231, 2143–2154(2020) [41] CHEN, P., CHEN, S., GUO, W., and GAO, F. The interface behavior of a thin piezoelectric film bonded to a graded substrate. Mechanics of Materials, 127, 26–38(2018) [42] CHEN, P., PENG, J., LIU, H., GAO, F., and GUO, W. The electromechanical behavior of a piezoelectric actuator bonded to a graded substrate including an adhesive layer. Mechanics of Materials, 123, 77–87(2018) [43] FRANCO, A. and ROYER-CARFAGNI, G. Effective bond length of FRP stiffeners. International Journal of Non-Linear Mechanics, 60, 46–57(2014) [44] CHEN, P., CHEN, S., and YIN, Y. Nonslipping contact between a mismatch film and a finitethickness graded substrate. Journal of Applied Mechanics, 83, 021007(2016) [45] GULER, M. A., GULVER, Y. F., and NART, E. Contact analysis of thin films bonded to graded coatings. International Journal of Mechanical Sciences, 55, 50–64(2012) [46] CHEN, P., PENG, J., YU, L., and YANG, Y. The interfacial analysis of a film bonded to a finite thickness graded substrate. International Journal of Solids and Structures, 120, 57–66(2017) |