Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (11): 1871-1886.doi: https://doi.org/10.1007/s10483-023-3051-6
• Articles • Previous Articles Next Articles
Yuyang SONG1, Liqun CHEN2, Tianzhi YANG1
Received:
2023-06-16
Revised:
2023-09-13
Published:
2023-10-26
Contact:
Tianzhi YANG, E-mail: yangtianzhi@me.neu.edu.cn
Supported by:
2010 MSC Number:
Yuyang SONG, Liqun CHEN, Tianzhi YANG. Geometrically nonlinear inerter for vibration suppression. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1871-1886.
[1] GRIFFIN, M. J. Handbook of Human Vibration, Academic Press, Pittsburgh (1990) [2] CUI, J. G., YANG, T. Z., NIU, M. Q., and CHEN, L. Q. Tunable roton-like dispersion relation with parametric excitations. Journal of Applied Mechanics, 89(11), 111005(2022) [3] CUI, J. G., YANG, T. Z., NIU, M. Q., and CHEN, L. Q. Interaction effects of driving amplitudes and frequencies on transitivity in a granular chain. Journal of Sound and Vibration, 529, 116966(2022) [4] CUI, J. G., NIU, M. Q., CHEN, L. Q., and YANG, T. Z. Asymmetric propagation of acoustic waves in a conical granular chain. Communications in Nonlinear Science and Numerical Simulation, 116, 106885(2023) [5] HOUSNER, G. W., BERGMAN, L. A., CAUGHEY, T. K., CHASSIAKOS, A. G., CLAUS, R. O., MASRI, S. F., SKELTON, R. E., SOONG, T. T., SPENCER, B. F., and YAO, J. T. P. Structural control: past, present, and future. Journal of Engineering Mechanics, 123(9), 897–971(1997) [6] TIGLI, O. F. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads. Journal of Sound and Vibration, 331(13), 3035–3049(2012) [7] IGUSA, T. and XU, K. Vibration control using multiple tuned mass dampers. Journal of Sound and Vibration, 175(4), 491–503(1994) [8] ZUO, L. and NAYFEH, S. A. The two-degree-of-freedom tuned-mass damper for suppression of single-mode vibration under random and harmonic excitation. Journal of Vibration and Acoustics, 128(1), 56–65(2006) [9] NAGASHIMA, I. and SHINOZAKI, Y. Variable gain feedback control technique of active mass damper and its application to hybrid structural control. Earthquake Engineering and Structural Dynamics, 26, 815–838(1997) [10] LOH, C. and LIN, P. Kalman filter approach for the control of seismic-induced building vibration using active mass damper systems. Structural Design of Tall and Special Buildings, 6, 209–224(1997) [11] YANG, T. Z., DUAN, Z. L., MENG, X. B., LIU, S. L., and CHEN, L. Q. Roton-enabled mechanical diode at extremely low frequency. Journal of Applied Mechanics, 91(1), 011010(2024) [12] CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3-5), 678–689(2007) [13] ROBERSON, R. E. Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute, 254(3), 205–220(1952) [14] ZHAO, F., JI, J., YE, K., and LUO, Q. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. International Journal of Mechanical Sciences, 192, 106093(2021) [15] YE, K., JI, J. C., and BROWN, T. Design of a quasi-zero stiffness isolation system for supporting different loads. Journal of Sound and Vibration, 471, 115198(2020) [16] GENDELMAN, O. V., MANEVITCH, L. I., VAKAKIS, A. F., and M’CLOSKEY, R. Energy pumping in nonlinear mechanical oscillators: part I, dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68(1), 34–41(2001) [17] VAKAKIS, A. F. and GENDELMAN, O. V. Energy pumping in nonlinear mechanical oscillators: part II, resonance capture. Journal of Applied Mechanics, 68(1), 42–48(2001) [18] LEE, Y. S., VAKAKIS, A. F., BERGMAN, L. A., MCFARLAND, D. M., KERSCHEN, G., NUCERA, F., TSAKIRTZIS, S., and PANAGOPOULOS, P. N. Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 222(2), 77–134(2008) [19] VAKAKIS, A. F., GENDELMAN, O. V., BERGMAN, L. A., MCFARLAND, D. M., KERSCHEN, G., and LEE, Y. S. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Springer, Berlin (2008) [20] LU, Z., YANG, T., BRENNAN, M. J., LI, X., and LIU, Z. G. On the performance of a two-stage vibration isolation system which has geometrically nonlinear stiffness. Journal of Vibration and Acoustics, 136(6), 064501(2014) [21] LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332(6), 1456–1464(2013) [22] GENDELMAN, O. V., EMMANUEL, G., and LAMARQUE, C. H. Quasiperiodic energy pumping in coupled oscillators under periodic forcing. Journal of Sound and Vibration, 294(4-5), 651–662(2006) [23] TRIPATHI, A., GROVER, P., and KALMÁR-NAGY, T. On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems. Journal of Sound and Vibration, 388, 272–297(2017) [24] GOURDON, E. and LAMARQUE, C. Nonlinear energy sink with uncertain parameters. Journal of Computational and Nonlinear Dynamics, 1(3), 187–195(2006) [25] ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119–134(2018) [26] GENG, X. F., DING, H., MAO, X. Y., and CHEN, L. Q. Nonlinear energy sink with limited vibration amplitude. Mechanical Systems and Signal Processing, 156, 107625(2021) [27] DANG, W. H., WANG, Z. H., CHEN, L. Q., and YANG, T. Z. A high-efficient nonlinear energy sink with a one-way energy converter. Nonlinear Dynamics, 109, 2247–2261(2022) [28] SAVADKOOHI, A. T., LAMARQUE, C. H., and DIMITRIJEVIC, Z. Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dynamics, 70, 1473–1483(2012) [29] LAMARQUE, C. H., GENDELMAN, O. V., SAVADKOOHI, A. T., and ETCHEVERRIA, E. Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mechanica, 221, 175–200(2011) [30] GEORGIADIS, F., VAKAKIS, A. F., MCFARLAND, D. M., and BERGMAN, L. Shock isolation through passive energy pumping caused by nonsmooth nonlinearities. International Journal of Bifurcation and Chaos, 15, 1989–2001(2005) [31] WIERSCHEM, N. E., HUBBARD, S. A., LUO, J., FAHNESTOCK, L. A., SPENCER, B. F., MCFARLAND, D. M., QUINN, D. D., VAKAKIS, A. F., and BERGMAN, L. A. Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. Journal of Sound and Vibration, 389, 52–72(2017) [32] LUO, J., WIERSCHEM, N. E., HUBBARD, S. A., FAHNESTOCK, L. A., QUINN, D. D., MCFARLAND, D. M., SPENCER, B. F., VAKAKIS, A. F., and BERGMAN, L. A. Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Engineering Structures, 77, 34–48(2014) [33] NUCERA, F., VAKAKIS, A. F., MCFARLAND, D. M., BERGMAN, L. A., and KERSCHEN, G. Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dynamics, 50, 651–677(2007) [34] GOURC, E., SEGUY, S., MICHON, G., BERLIOZ, A., and MANN, B. P. Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. Journal of Sound and Vibration, 355, 392–406(2015) [35] BAB, S., KHADEM, S. E., SHAHGHOLI, M., and ABBASI, A. Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mechanical Systems and Signal Processing, 84, 128–157(2017) [36] LEE, Y. S., VAKAKIS, A. F., BERGMAN, L. A., MCFARLAND, D. M., and KERSCHEN, G. Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA Journal, 45(3), 693-711(2007) [37] LEE, Y. S., KERSCHEN, G., MCFARLAND, D. M., HILL, W. J., NICHKAWDE, C., STRGANAC, T. W., BERGMAN, L. A., and VAKAKIS, A. F. Suppressing aeroelastic instability using broad band passive targeted energy transfers, part 2: experiments. AIAA Journal, 45(10), 2391–2400(2007) [38] ZHANG, Y. W., LU, Y. N., and CHEN, L. Q. Energy harvesting via nonlinear energy sink for whole-spacecraft. Science China Technological Sciences, 62, 1483–1491(2019) [39] YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937–1944(2018) [40] SUN, Y. H., ZHANG, Y. W., DING, H., and CHEN, L. Q. Nonlinear energy sink for a flywheel system vibration reduction. Journal of Sound and Vibration, 429, 305–324(2018) [41] CHEN, L. Q., ZHANG, G. C., and DING, H. Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction. Journal of Sound and Vibration, 354, 196–218(2015) [42] CHEN, H. Y., DING, H., LI, S. H., and CHEN, L. Q. Convergent term of the Galerkin truncation for dynamic response of sandwich beams on nonlinear foundations. Journal of Sound and Vibration, 483, 115514(2020) [43] FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 391, 35–49(2017) [44] MANN, B. P. and SIMS, N. D. Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration, 319(1-2), 515–530(2009) [45] KREMER, D. and LIU, K. F. A nonlinear energy sink with an energy harvester: transient responses. Journal of Sound and Vibration, 333(20), 4859–4880(2014) [46] ZHANG, Y., TANG, L., and LIU, K. Piezoelectric energy harvesting with a nonlinear energy sink. Journal of Intelligent Materials Systems and Structures, 28(3), 307–322(2017) [47] HAN, Q. K., WANG, T. Y., DING, Z., XU, X. P., and CHU, F. L. Magnetic equivalent modeling of stator currents for localized fault detection of planetary gearboxes coupled to electric motors. IEEE Transactions on Industrial Informatics, 68(3), 2575–2586(2021) [48] SMITH, M. C. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47(10), 1648–1662(2002) [49] LAZAR, I. F., NEILD, S. A., and WAGG, D. J. Using an inerter-based device for structural vibration suppression. Earthquake Engineering & Structural Dynamics, 43(8), 1129–1147(2014) [50] KUHNERT, W. M., GONCALVES, P. J. P., LEDEZMA-RAMIREZ, D. F., and BRENNAN, M. J. Inerter-like devices used for vibration isolation: a historical perspective. Journal of the Franklin Institute, 358(1), 1070–1086(2021) [51] CHEN, M., PAPAGEORGIOU, C., SCHEIBE, F., WANG, F., and SMITH, M. The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 9, 10–26(2009) [52] CHILLEMI, M., FURTMÜLLER, T., ADAM, C., and PIRROTTA, A. Nonlinear mechanical model of a fluid inerter. Mechanical Systems and Signal Processing, 188, 109986(2023) [53] ZHANG, Z., LU, Z. Q., DING, H., and CHEN, L. Q. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450, 199–213(2019) [54] DUAN, Z. L., CUI, J. G., CHEN, L. Q., and YANG, T. Z. Nonlinear mechanical roton. Journal of Applied Mechanics, 90(3), 031010(2023) [55] SAPSIS, T. P., QUINN, D. D., VAKAKIS, A. F., and BERGMAN, L. A. Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. Journal of Vibration and Acoustics, 134(1), 011016(2012) [56] MORAES, F. D. H., SILVEIRA, M., and GONÇALVES, P. J. P. On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dynamics, 93, 1325–1340(2018) [57] YANG, J., JIANG, J. Z., and NEILD, S. A. Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dynamics, 99, 1823–1839(2020) [58] DANG, W. H., LIU, S. L., CHEN, L. Q., and YANG, T. Z. A dual-stage inerter-enhanced nonlinear energy sink. Nonlinear Dynamics, 111, 6001–6015(2023) [59] DONG, Z., SHI, B., YANG, J., and LI, T. Y. Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dynamics, 107, 1637–1662(2022) [60] SHI, B., DAI, W., and YANG, J. Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism. Nonlinear Dynamics, 109, 419–442(2022) |
[1] | Kefan XU, Muqing NIU, Yewei ZHANG, Liqun CHEN. An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams: theory and experiment [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440. |
[2] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[3] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[4] | Yong WANG, Peili WANG, Haodong MENG, Liqun CHEN. Dynamic performance and parameter optimization of a half-vehicle system coupled with an inerter-based X-structure nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 85-110. |
[5] | Jianxun ZHANG, Jinwen BAI. A novel efficient energy absorber with free inversion of a metal foam-filled circular tube [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 1-14. |
[6] | Huifeng XI, Guicheng ZHAO, O. BRUHNS, Siyu WANG, Heng XIAO. Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1497-1510. |
[7] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[8] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[9] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[10] | J. N. FUHG, A. KARMARKAR, T. KADEETHUM, H. YOON, N. BOUKLAS. Deep convolutional Ritz method: parametric PDE surrogates without labeled data [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1151-1174. |
[11] | Lei LI, Zhong LUO, Fengxia HE, Jilai ZHOU, Hui MA, Hui LI. Experimental and simulation studies on similitude design method for shock responses of beam-plate coupled structure [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 917-930. |
[12] | Jian'en CHEN, Jianling LI, Minghui YAO, Jun LIU, Jianhua ZHANG, Min SUN. Nonreciprocity of energy transfer in a nonlinear asymmetric oscillator system with various vibration states [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 727-744. |
[13] | Shengtao ZHANG, Jiaxi ZHOU, Hu DING, Kai WANG, Daolin XU. Fractional nonlinear energy sinks [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 711-726. |
[14] | Ruilan TIAN, Huaitong GUAN, Xuhao LU, Xiaolong ZHANG, Huanan HAO, Wenjie FENG, Guanglei ZHANG. Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 345-362. |
[15] | Jihou YANG, Weixing ZHANG, Xiaodong YANG. Integrated device for multiscale series vibration reduction and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2227-2242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||