Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (2): 373-388.doi: https://doi.org/10.1007/s10483-024-3088-7
• Articles • Previous Articles
M. RAHMAN1, M. TURKYILMAZOGLU2,*(), Z. MUSHTAQ1
Received:
2023-07-09
Online:
2024-02-01
Published:
2024-01-27
Contact:
M. TURKYILMAZOGLU
E-mail:turkyilm@hacettepe.edu.tr
2010 MSC Number:
M. RAHMAN, M. TURKYILMAZOGLU, Z. MUSHTAQ. Effects of multiple shapes for steady flow with transformer oil+Fe3O4+TiO2 between two stretchable rotating disks. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 373-388.
1 | CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, United States, CONF-951135–29 (1995) |
2 |
WAINI, I., ISHAK, A., and POP, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics (English Edition), 41 (3), 507- 520 (2020)
doi: 10.1007/s10483-020-2584-7 |
3 | KHAN, N. S., KUMAM, P., and THOUNTHONG, P. Second law analysis with effects of Arrhenius activation energy and binary chemical reaction on nanofluid flow. Scientific Reports, 10 (1), 1- 16 (2020) |
4 | ARORA, R. C., and STOKES, V. K. On the heat transfer between two rotating disks. International Journal of Heat and Mass Transfer, 15 (11), 2119- 2132 (1972) |
5 | HOLODNIOK, M., KUBI, M., and HLAVA, V. Computation of the flow between two rotating coaxial disks: multiplicity of steady-state solutions. Journal of Fluid Mechanics, 108, 227- 240 (1981) |
6 | EMSLIE, A. G., BONNER, F. T., and PECK, L. G. Flow of a viscous liquid on a rotating disk. Journal of Applied Physics, 29 (5), 858- 862 (1958) |
7 | KHAN, J. A., MUSTAFA, M., HAYAT, T., TURKYILMAZOGLU, M., and ALSAEDI, A. Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno's model. International Journal of Numerical Methods for Heat and Fluid Flow, 27 (1), 221- 234 (2017) |
8 | TURKYILMAZOGLU, M. Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. International Journal of Engineering Science, 51, 233- 240 (2012) |
9 | MOSAYEBIDORCHEH, S., and HATAMI, M. Heat transfer analysis in carbon nanotube-water between rotating disks under thermal radiation conditions. Journal of Molecular Liquids, 240, 258- 267 (2017) |
10 | TURKYILMAZOGLU, M. Fluid flow and heat transfer over a rotating and vertically moving disk. Physics of Fluids, 30 (6), 063605 (2018) |
11 | ROUT, B. C., MISHRA, S. R., and NAYAK, B. Semianalytical solution of axisymmetric flows of Cu- and Ag-water nanofluids between two rotating disks. Heat Transfer Asian Research, 48 (3), 957- 981 (2019) |
12 | HOSSEINZADEH, K., MOGHARREBI, A. R., ASADI, A., SHEIKHSHAHROKHDEHKORDI, M., MOUSAVISANI, S., and GANJI, D. D. Entropy generation analysis of mixture nanofluid (H2O-C2H6O2)-Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation. International Journal of Ambient Energy, 43 (1), 1045- 1057 (2022) |
13 | KHAN, S. A., SAEED, T., KHAN, M. I., HAYAT, T., KHAN, M. I., and ALSAEDI, A. Entropy optimized CNTs based Darcy-Forchheimer nanomaterial flow between two stretchable rotating disks. International Journal of Hydrogen Energy, 44 (59), 31579- 31592 (2019) |
14 | ZANGOOEE, M. R., HOSSEINZADEH, K., and GANJI, D. D. Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Studies in Thermal Engineering, 14, 100460 (2019) |
15 | MAJEED, A. H., BILAL, S., MAHMOOD, R., and MALIK, M. Y. Heat transfer analysis of viscous fluid flow between two coaxially rotated disks embedded in permeable media by capitalizing non-Fourier heat flux model. Physica A: Statistical Mechanics and Its Applications, 540, 123182 (2020) |
16 | BHATTACHARYYA, A., SETH, G. S., KUMAR, R., and CHAMKHA, A. J. Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. Journal of Thermal Analysis and Calorimetry, 139, 1655- 1670 (2020) |
17 | MASKEEN, M. M., ZEESHAN, A., MEHMOOD, O. U., and HASSAN, M. Heat transfer enhancement in hydromagnetic alumina-copper/water hybrid nanofluid flow over a stretching cylinder. Journal of Thermal Analysis and Calorimetry, 138, 1127- 1136 (2019) |
18 | KHASHI'IE, N. S., ARIFIN, N. M., NAZAR, R., HAFIDZUDDIN, E. H., WAHI, N., and POP, I. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics, 64, 251- 263 (2020) |
19 | TURKYILMAZOGLU, M. Nanoliquid film flow due to a moving substrate and heat transfer. The European Physical Journal Plus, 135, 1- 13 (2020) |
20 | WAINI, I., ISHAK, A., GROSAN, T., and POP, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. International Communications in Heat and Mass Transfer, 114, 104565 (2020) |
21 | ISLAM, S., KHAN, A., DEEBANI, W., BONYAH, E., ALRESHIDI, N. A., and SHAH, Z. Influences of Hall current and radiation on MHD micropolar non-Newtonian hybrid nanofluid flow between two surfaces. AIP Advances, 10 (5), 055015 (2020) |
22 | LUND, L. A., OMAR, Z., KHAN, I., and SHERIF, E. M. Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry Basel, 12 (2), 276 (2020) |
23 | IQBAL, M. S., GHAFFARI, A., MUSTAFA, I., and ALI, H. M. Impact of wavy texture and hybridity of nanofluid on heat transfer augmentation over the frustum of cone geometry. Thermal Science, 25 (4), 2691- 2700 (2021) |
24 | AHMAD, I., FAISAL, M., ABADIN, Q., JAVED, T., and LOGANATHAN, K. Unsteady 3D heat transport in hybrid nanofluid containing brick shaped ceria and zinc-oxide nanocomposites with heat source/sink. Nanocomposites, 8 (1), 1- 12 (2022) |
25 | SHOAIB, M., RAJA, M. A. Z., SABIR, M. T., AWAIS, M., ISLAM, S., SHAH, Z., and KUMAM, P. Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto ⅢA technique. Alexandria Engineering Journal, 60 (4), 3605- 3619 (2021) |
26 | HOSSEINZADEH, K., ROGHANI, S., ASADI, A., MOGHARREBI, A., and GANJI, D. D. Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. International Journal of Numerical Methods for Heat and Fluid Flow, 31 (1), 402- 417 (2020) |
27 | ESWARAMOORTHI, S., DIVYA, S., FAISAL, M., and NAMGYEL, N. Entropy and heat transfer analysis for MHD flow of-water-based nanofluid on a heated 3D plate with nonlinear radiation. Mathematical Problems in Engineering, 2022, 7319988 (2022) |
28 | SALEEM, S., ANIMASAUN, I. L., YOOK, S. J., AL-MDALLAL, Q. M., SHAH, N. A., and FAISAL, M. Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion. Surfaces and Interfaces, 30, 101854 (2022) |
29 | CHEN, J., ZHAO, C. Y., and WANG, B. X. Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: an experimental and theoretical study. International Journal of Heat and Mass Transfer, 154, 119690 (2020) |
30 | WANG, F., RANI, S. P., SARADA, K., GOWDA, R. J. P., ZAHRAN, H. Y., and MAHMOUD, E. E. The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Studies in Thermal Engineering, 33, 101930 (2022) |
31 | RAJU, S. S. K., BABU, M. J., and RAJU, C. S. K. Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects. Chinese Journal of Physics, 72, 499- 529 (2021) |
32 | JIANG, Y., ZHOU, X., and WAN, Y. Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble. Microgravity Science and Technology, 32 (2), 167- 177 (2020) |
33 | WANG, Q., RAFIQ, M., LYU, Y. Z., LI, C., and YI, K. Preparation of three types of transformer oil-based nanofluids and comparative study on the effect of nanoparticle concentrations on insulating property of transformer oil. Journal of Nanotechnology, 2016, 5802753 (2016) |
34 | UKESSAYS. Transformer oil or insulating oil engineering essay. www. ukessays. com (2015) https://www.ukessays.com/essays/engineering/transformer-oil-or-insulating-oil-engineering-essay.php?vref=1 |
35 | SHEIKHOLESLAMI, M., OZTOP, H. F., ABU-HAMDEH, N., and LI, Z. Nanoparticle transportation of CuO-H2O nanofluid in a porous semi annulus due to Lorentz forces. International Journal of Numerical Methods for Heat and Fluid Flow, 29 (1), 294- 308 (2019) |
36 | KHAN, U., ZAIB, A., KHAN, I., BALEANU, D., and NISAR, K. S. Enhanced heat transfer in moderately ionized liquid due to hybrid MoS2/SiO2 nanofluids exposed by nonlinear radiation: stability analysis. Crystals, 10 (2), 142 (2020) |
[1] | A. S. JOHN, B. MAHANTHESH, G. LORENZINI. Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 677-694. |
[2] | A. A. SIDDIQUI, M. SHEIKHOLESLAMI. TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(8): 1201-1216. |
[3] | R. RAVI, C. KANCHANA, P. G. SIDDHESHWAR. Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(11): 1579-1600. |
[4] | S. ABBASBANDY;T. HAYAT;H. R. GHEHSAREH;A.ALSAEDI. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(8): 921-930. |
[5] | T. HAYAT;A. SHAFIQ;M. NAWAZ;A. ALSAEDI. MHD axisymmetric flow of third grade fluid between porous disks with heat transfer [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(6): 749-764. |
[6] | M. NAWAZ;T. HAYAT;A.ALSAEDI. Dufour and Soret effects on MHD flow of viscous fluid between radially stretching sheets in porous medium [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1403-1418. |
[7] | T. HAYAT;M.NAWAZ;S.OBAIDAT. Axisymmetric magnetohydrodynamic flow of micropolar fluid between unsteady stretching surfaces [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 361-374. |
[8] | Ibrahim A. ABBAS;G.PALANI. Effects of magnetohydrodynamic flow past a vertical plate with variable surface temperature [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(3): 329-338. |
[9] | YANG Xiao;LIU Xue-mei. TEMPERATURE PROFILES OF LOCAL THERMAL NONEQUILIBRIUM FOR THERMAL DEVELOPING FORCED CONVECTION IN POROUS MEDIUM PARALLEL PLATE CHANNEL [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(8): 1123-1131 . |
[10] | Kamel Hooman;Alireza Pourshaghaghy;Arash Ejlali. EFFECTS OF VISCOUS DISSIPATION ON THERMALLY DEVELOPING FORCED CONVECTION IN A POROUS SATURATED CIRCULAR TUBE WITH AN ISOFLUX WALL [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(5): 617-626 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||