Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (4): 677-694.doi: https://doi.org/10.1007/s10483-024-3089-5
• Articles • Previous Articles Next Articles
A. S. JOHN1, B. MAHANTHESH1,2, G. LORENZINI3,*()
Received:
2023-06-05
Online:
2024-04-01
Published:
2024-04-08
Contact:
G. LORENZINI
E-mail:giulio.lorenzini@unipr.it
2010 MSC Number:
A. S. JOHN, B. MAHANTHESH, G. LORENZINI. Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 677-694.
1 | CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. International Mechanical Engineering Congress and Exposition, 66, 613- 630 (1995) |
2 | NIIHARA, K. New design concept of structural ceramics ceramic nanocomposites. Journal of the Ceramic Society of Japan, 99 (1154), 974- 982 (1991) |
3 | KHANAFER, K., VAFAI, K., and LIGHTSTONE, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46 (19), 3639- 3653 (2003) |
4 | BUONGIORNO, J. Convective transport in nanofluids. ASME Heat Transfer, 128 (3), 240- 250 (2006) |
5 | TIWARI, R. K., and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50 (9-10), 2002- 2018 (2007) |
6 | SUNDAR, L. S., SHARMA, K. V., SINGH, M. K., and SOUSA, A. C. M. A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164- 177 (2015) |
7 | SARKAR, J., GHOSH, P., and ADIL, A. Hybrid nanofluids preparation, thermal properties, heat transfer, and friction factor——a review. Renewable and Sustainable Energy Reviews, 68, 185- 198 (2017) |
8 | SIDIK, N. A. C., JAMIL, M. M., JAPAR, W. M. A. A., and ADAMU, I. M. A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 80, 1112- 1122 (2017) |
9 | HERWIG, H., WICKERN, G., and GERSTEN, K. Influence of variable fluid properties to free convection laminar flows. Waerme-Stoffuebertrag, 19 (1), 19- 30 (1985) |
10 | POP, I., GORLA, R. S. R., and RASHIDI, M. The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. International Journal of Engineering Science, 30, 1- 6 (1992) |
11 | SEDDEEK, M. A. Finite-element method for the effects of chemical reaction, variable viscosity, thermophoresis, and heat generation/absorption on a boundary-layer hydromagnetic flow with heat and mass transfer over a heat surface. Acta Mechanica, 177 (1), 1- 18 (2005) |
12 | MUKHOPADHYAY, S., LAYEK, G. C., and SAMAD, S. A. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. International Journal of Heat and Mass Transfer, 48 (21-22), 4460- 4466 (2005) |
13 | CHIAM, T. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mechanica, 129 (1), 63- 72 (1998) |
14 | PHAN-THIEN, N. Cone and plate flow of the Oldroyd-B fluid is unstable. Journal of Non-Newtonian Fluid Mechanics, 17 (1), 37- 44 (1985) |
15 | OWEN, J. M., and ROGERS, R. H. Flow and heat transfer in rotating-disk systems, volume Ⅰ——rotor-stator systems. NASA STI/Recon Technical Report A, 90, 45759 (1989) |
16 | MOONEY, M., and EWART, R. H. The conicylindrical viscometer. Physics, 5 (11), 350- 354 (1934) |
17 | SPRUELL, C., and BAKER, A. B. Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells. Biotechnology and Bioengineering, 110 (6), 1782- 1793 (2013) |
18 | FEWELL, M. E., and HELLUMS, J. D. The secondary flow of Newtonian fluids in cone-and-plate viscometers. Transactions of the Society of Rheology, 21 (4), 535- 565 (1977) |
19 | SDOUGOS, H. P., BUSSOLARI, S. R., and DEWEY, C. F. Secondary flow and turbulence in a cone-and-plate device. Journal of Fluid Mechanics, 138, 379- 404 (1984) |
20 | SHEVCHUK, , I., V.. A self-similar solution of Navier-Stokes and energy equations for rotating flows between a cone and a disk. High Temperature, 42 (1), 104- 110 (2004) |
21 | SHEVCHUK, , I., V.. Convective Heat and Mass Transfer in Rotating Disk Systems, Springer, New York (2009) |
22 | SHEVCHUK, I. V. Laminar heat and mass transfer in rotating cone-and-plate devices. Journal of Heat Transfer, 133 (2), 024502 (2011) |
23 | SHEVCHUK, I. V. An asymptotic expansion method vs a self-similar solution for convective heat transfer in rotating cone-disk systems. Physics of Fluids, 34 (10), 103610 (2022) |
24 | GUL, T., BILAL, M., ALGHAMDI, W., ASJAD, M., and ABDELJAWAD, T. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Scientific Reports, 11 (1), 1- 19 (2021) |
25 | TURKYILMAZOGLU, M. On the fluid flow and heat transfer between a cone and a disk both stationary or rotating. Mathematics and Computers in Simulation, 177, 329- 340 (2020) |
26 | TURKYILMAZOGLU, M. The flow and heat in the conical region of a rotating cone and an expanding disk. International Journal of Numerical Methods for Heat and Fluid Flow, 3 (6), 2181- 2197 (2023) |
27 | SRILATHA, P., REMIDI, S., NAGAPAVANI, M., SINGH, H., and PRASANNAKUMARA, B. C. Heat and mass transfer analysis of a fluid flow across the conical gap of a cone-disk apparatus under the thermophoretic particles motion. Energies, 16 (2), 952 (2023) |
28 | MOATIMID, G. M., MOHAMED, M. A. A., and ELAGAMY, K. A Casson nanofluid flow within the conical gap between rotating surfaces of a cone and a horizontal disk. Scientific Reports, 12 (1), 11275 (2022) |
29 | WANG, F., RANI, S. P., SARADA, K., GOWDA, R. J. P., KHAN, U., ZAHRAN, H. Y., and MAHMOUD, E. E. The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Studies in Thermal Engineering, 33, 101930 (2022) |
30 | BASAVARAJAPPA, M., and BHATTA, D. Study of the flow of Buongiorno nanofluid in a conical gap between a cone and a disk. Physics of Fluid, 34 (11), 112004 (2022) |
31 | BASAVARAJAPPA, M., and BHATTA, D. Lie group analysis of flow and heat transfer of nanofluid in cone-disk systems with hall current and radiative heat flux. Mathematical Methods in the Applied Sciences, 46 (14), 15838- 15867 (2023) |
32 | SHEVCHUK, I. V. Laminar heat transfer of a swirled flow in a conical diffuser, self-similar solution. Fluid Dynamics, 39 (1), 42- 46 (2004) |
33 | SHEVCHUK, I. V. Heat and mass transfer in rotating cone-and-disk systems for laminar lows. Modelling of Convective Heat and Mass Transfer in Rotating Flows, 127- 143 (2016) |
34 | SHEVCHUK, I. V. Concerning the effect of radial thermal conductivity in a self-similar solution for rotating cone-disk systems. International Journal of Numerical Methods for Heat and Fluid Flow, 33 (1), 204- 225 (2022) |
35 | RASHIDI, M. M., KAVYANI, N., and ABELMAN, S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. International Journal of Heat and Mass Transfer, 70, 892- 917 (2014) |
36 | RAJPUT, S., BHATTACHARYYA, K., PANDEY, A. K., and CHAMKHA, A. J. Unsteady axisymmetric flow of nanofluid on nonlinearly expanding surface with variable fluid properties. JCIS Open, 8, 100064 (2022) |
37 | JOHN, A. S., MAHANTHESH, B., and SHEVCHUK, I. V. Study of nanofluid flow and heat transfer in a stationary cone-disk system. Thermal Science and Engineering Progress, 46, 102173 (2023) |
38 | PAK, B. C., and CHO, Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11 (2), 151- 170 (1998) |
39 | DAS, S. K., CHOI, S. U., YU, W., and PRADEEP, T. Nanofluids: Science and Technology, John Wiley & Sons, Chantilly (2007) |
40 | ESFE, M. H., ARANI, A. A. A., REZAIE, M., YAN, W. M., and KARIMIPOUR, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO water hybrid nanofluid. International Communication in Heat and Mass Transfer, 66, 189- 195 (2015) |
41 | BEECE, D., EISENSTEIN, L., FRAUENFELDER, H., GOOD, D., MARDEN, M. C., REINISCH, L., REYNOLDS, A. H., SORENSEN, L. B., and YUE, K. T. Solvent viscosity and protein dynamics. Biochemistry, 19 (23), 5147- 5157 (1980) |
42 | SHAMPINE, L. F., GLADWELL, I., and THOMPSON, S. Solving ODEs with MATLAB, Cambridge University Press, Cambridge (2003) |
43 | ANIMASAUN, I. L. Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-Darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. Journal of the Nigerian Mathematical Society, 34 (1), 11- 31 (2015) |
44 | ZIABAKHSH, Z., and DOMAIRRY, G. Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 14 (5), 1868- 1880 (2009) |
45 | HATAMI, M., and GANJI, D. D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Studies in Thermal Engineering, 2, 14- 22 (2014) |
46 | RAM, P., JOSHI, V. K., SHARMA, K., WALIA, M., and YADAV, N. Variable viscosity effects on time-dependent magnetic nanofluid flow past a stretchable rotating plate. Open Physics, 14 (1), 651- 658 (2016) |
47 | GBADEYAN, J. A., TITILOYE, E. O., and ADEOSUN, A. T. Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon, 6 (1), e03076 (2020) |
[1] | M. RAHMAN, M. TURKYILMAZOGLU, Z. MUSHTAQ. Effects of multiple shapes for steady flow with transformer oil+Fe3O4+TiO2 between two stretchable rotating disks [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 373-388. |
[2] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[3] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[4] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[5] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[6] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[7] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[8] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[9] | J. MACKOLIL, B. MAHANTHESH. Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1663-1674. |
[10] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524. |
[11] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Impact of anisotropic slip on the stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1401-1416. |
[12] | C. REVNIC, T. GROŞAN, M. SHEREMET, I. POP. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1345-1358. |
[13] | M. KHAN, J. AHMED, F. SULTANA, M. SARFRAZ. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1125-1138. |
[14] | I. WAINI, A. ISHAK, I. POP. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 507-520. |
[15] | A. A. SIDDIQUI, M. SHEIKHOLESLAMI. TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(8): 1201-1216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||