Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (8): 1295-1314.doi: https://doi.org/10.1007/s10483-024-3133-8
• Articles • Previous Articles Next Articles
Jiamei WANG1, Siukai LAI1,2,*(), Chen WANG3, Yiting ZHANG1, Zhaolin CHEN1,4
Received:
2024-03-12
Online:
2024-08-03
Published:
2024-07-31
Contact:
Siukai LAI
E-mail:sk.lai@polyu.edu.hk
Supported by:
2010 MSC Number:
Jiamei WANG, Siukai LAI, Chen WANG, Yiting ZHANG, Zhaolin CHEN. On the role of sliding friction effect in nonlinear tri-hybrid vibration-based energy harvesting. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1295-1314.
Fig. 4
Time-domain analysis of tip magnet vibration amplitudes and phase portraits at an excitation acceleration of 1g: (a) μ=0.2, yinitial=4 mm; (b) μ=0.2, yinitial=20 mm; (c) μ=0.3, yinitial=4 mm; (d) μ=0.3, yinitial=20 mm; (e) μ=0.4, yinitial=4 mm; (f) μ=0.4, yinitial=20 mm; (g) μ=0.5, yinitial=4 mm; (h) μ=0.5, yinitial=20 mm, where blue lines represent up-conversion frequency sweeping results, while red lines represent down-conversion frequency sweeping results (color online)"
Fig. 5
Phase diagrams for the dynamic motion of Magnet A: (a) yinitial=4 mm and (b) yinitial=20 mm without and with friction at an excitation acceleration of 1g and a frequency of 2 Hz, where blue lines represent the results without friction, while green lines represent the results with friction (μ=0.3) (color online)"
Fig. 6
Phase diagrams for the dynamic motion of Magnet A: (a) yinitial=4 mm and (b) yinitial=20 mm without and with friction at an excitation acceleration of 1g and a frequency of 5 Hz, where blue lines denote the results without friction, while green lines denote the results with friction (μ=0.3) (color online)"
Fig. 7
Phase diagrams for the dynamic motion of Magnet A: (a) yinitial=4 mm and (b) yinitial=20 mm without and with friction at an excitation acceleration of 1.5g and a frequency of 5 Hz, where blue lines represent the results without friction, while green lines represent the results with friction (μ=0.3) (color online)"
1 | CARNEIRO, P., SOARES DOS SANTOS, M. P., RODRIGUES, A., FERREIRA, J. A. F., SIMÕES, J. A. O., MARQUES, A. T., and KHOLKIN, A. L. Electromagnetic energy harvesting using magnetic levitation architectures: a review. Applied Energy, 260, 114191 (2020) |
2 | BEEBY, S. P. and O'DONNELL, T. Electromagnetic energy harvesting. Energy Harvesting Technologies, Springer, New York, 129–161 (2009) |
3 | SEZER, N., and KOÇ, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80, 105567 (2021) |
4 | KIM, H. S., KIM, J. H., and KIM, J. A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12, 1129- 1141 (2011) |
5 | SAFAEI, M., SODANO, H. A., and ANTON, S. R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Materials Structures, 28, 113001 (2019) |
6 | BEEBY, S. P., TUDOR, M. J., and WHITE, N. Energy harvesting vibration sources for microsystems applications. Measurement Science Technology, 17, R175 (2006) |
7 | JIN, W., WANG, Z., HUANG, H., HU, X., HE, Y., LI, M., LI, L., GAO, Y., HU, Y., and GU, H. High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr, Ti)O3 nanorod arrays. RSC Advances, 8, 7422- 7427 (2018) |
8 | COVACI, C., and GONTEAN, A. Piezoelectric energy harvesting solutions: a review. Sensors, 20, 3512 (2020) |
9 | DAI, X., WANG, H., WU, H., PAN, Y., LUO, D., AHMED, A., and ZHANG, Z. A hybrid energy harvesting system for self-powered applications in shared bicycles. Sustainable Energy Technologies and Assessments, 51, 101891 (2022) |
10 | SIANG, J., LIM, M. H., and LEONG, M. S. Review of vibration-based energy harvesting technology: mechanism and architectural approach. International Journal of Energy Research, 42, 1866- 1893 (2018) |
11 | YANG, B., XUAN, F. Z., JIN, P., HU, C., XIAO, B., LI, D., XIANG, Y., and LEI, H. Damage localization in composite laminates by building in PZT wafer transducers: a comparative study with surface-bonded PZT strategy. Advanced Engineering Materials, 21, 1801040 (2019) |
12 | MARZENCKI, M., BASROUR, S., CHARLOT, B., GRASSO, A., COLIN, M., and VALBIN, L. Design and fabrication of piezoelectric micro power generators for autonomous microsystems. Proceedings of Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Switzerland, 299–302 (2005) |
13 | ROGACHEVA, N. N. The dynamic behaviour of piezoelectric laminated bars. Journal of Applied Mathematics and Mechanics, 71, 494- 510 (2007) |
14 | SHAO, N., CHEN, Z., WANG, X., ZHANG, C., XU, J., XU, X., and YAN, R. Modeling and analysis of magnetically coupled piezoelectric dual beam with an annular potential energy function for broadband vibration energy harvesting. Nonlinear Dynamics, 111, 11911- 11937 (2023) |
15 | DAI, H. L., ABDELMOULA, H., ABDELKEFI, A., and WANG, L. Towards control of cross-flow-induced vibrations based on energy harvesting. Nonlinear Dynamics, 88, 2329- 2346 (2017) |
16 | LI, H., and QIN, W. Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dynamics, 81, 1751- 1757 (2015) |
17 | CHEN, L. Q., and FAN, Y. Internal resonance vibration-based energy harvesting. Nonlinear Dynamics, 111, 11703- 11727 (2023) |
18 | LI, M., YU, D., LI, Y., LIU, X., and DAI, F. Integrated a nonlinear energy sink and a piezoelectric energy harvester using simply-supported bi-stable piezoelectric composite laminate. International Journal of Non-Linear Mechanics, 156, 104464 (2023) |
19 | FAN, Y., GHAYESH, M. H., LU, T. F., and AMABILI, M. Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters. International Journal of Non-Linear Mechanics, 142, 103974 (2022) |
20 | SU, M., XU, W., and ZHANG, Y. Theoretical analysis of piezoelectric energy harvesting system with impact under random excitation. International Journal of Non-Linear Mechanics, 119, 103322 (2020) |
21 | ESHTEHARDIHA, R., TIKANI, R., and ZIAEI RAD, S. Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance. Journal of Sound and Vibration, 500, 116022 (2021) |
22 | SARKER, M. R., SAAD, M. H. M., OLAZAGOITIA, J. L., and VINOLAS, J. Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics, 10, 1108 (2021) |
23 | FU, H., THEODOSSIADES, S., GUNN, B., ABDALLAH, I., and CHATZI, E. Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator. Nonlinear Dynamics, 101, 2131- 2143 (2020) |
24 | FAN, F. R., TIAN, Z. Q., and WANG, Z. L. Flexible triboelectric generator. Nano Energy, 1, 328- 334 (2012) |
25 | JIN, C., KIA, D. S., JONES, M., and TOWFIGHIAN, S. On the contact behavior of micro-/nano-structured interface used in vertical-contact-mode triboelectric nanogenerators. Nano Energy, 27, 68- 77 (2016) |
26 | SHIN, S. H., KWON, Y. H., KIM, Y. H., JUNG, J. Y., LEE, M. H., and NAH, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano, 9, 4621- 4627 (2015) |
27 | HE, X., GUO, H., YUE, X., GAO, J., XI, Y., and HU, C. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 7, 1896- 1903 (2015) |
28 | BUSOLO, T., URA, D. P., KIM, S. K., MARZEC, M. M., BERNASIK, A., STACHEWICZ, U., and KAR NARAYAN, S. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy, 57, 500- 506 (2019) |
29 | LIU, H., FU, H., SUN, L., LEE, C., and YEATMAN, E. M. Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 137, 110473 (2021) |
30 | BOLAT, F. C., BASARAN, S., and SIVRIOGLU, S. Piezoelectric and electromagnetic hybrid energy harvesting with low-frequency vibrations of an aerodynamic profile under the air effect. Mechanical Systems and Signal Processing, 133, 106246 (2019) |
31 | YANG, X., LAI, S. K., WANG, C., WANG, J. M., and DING, H. On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations. Energy, 252, 124028 (2022) |
32 | CHEN, K., GAO, Q., FANG, S., ZOU, D., YANG, Z., and LIAO, W. H. An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth. Applied Energy, 298, 117274 (2021) |
33 | WANG, C., LAI, S. K., WANG, J. M., FENG, J. J., and NI, Y. Q. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Applied Energy, 291, 116825 (2021) |
34 | ZHAO, L. C., ZOU, H. X., ZHAO, Y. J., WU, Z. Y., LIU, F. R., WEI, K. X., and ZHANG, W. M. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Applied Energy, 314, 118983 (2022) |
35 | WANG, C., JI, Y., LAI, S. K., LIU, Y., HAO, Y., LI, G., WANG, C., and WEN, G. L. A speed-amplified tri-stable piezoelectric-electromagnetic-triboelectric hybrid energy harvester for low-frequency applications. Nano Energy, 114, 108630 (2023) |
36 |
CHEN, H. Y., ZENG, Y. C., DING, H., LAI, S. K., and CHEN, L. Q. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink. Applied Mathematics and Mechanics (English Edition), 45, 389- 406 (2024)
doi: 10.1007/s10483-024-3095-9 |
37 | ZHOU, S., LALLART, M., and ERTURK, A. Multistable vibration energy harvesters: principle, progress, and perspectives. Journal of Sound and Vibration, 528, 116886 (2022) |
38 | HE, X., WEN, Q., SUN, Y., and WEN, Z. A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester. Nano Energy, 40, 300- 307 (2017) |
39 | WANG, C., LAI, S. K., WANG, Z. C., WANG, J. M., YANG, W., and NI, Y. Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 64, 103943 (2019) |
40 | CHENG, T., GAO, Q., and WANG, Z. L. The current development and future outlook of triboelectric nanogenerators: a survey of literature. Advanced Materials Technologies, 4, 1800588 (2019) |
41 | SONG, C., ZHU, X., WANG, M., YANG, P., CHEN, L., HONG, L., and CUI, W. Recent advances in ocean energy harvesting based on triboelectric nanogenerators. Sustainable Energy Technologies and Assessments, 53, 102767 (2022) |
42 | LIN, Z. H., ZHU, G., ZHOU, Y. S., YANG, Y., BAI, P., CHEN, J., and WANG, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie, 125, 5169- 5173 (2013) |
43 | WARDHANA, E. M., MUTSUDA, H., TANAKA, Y., NAKASHIMA, T., KANEHIRA, T., MAEDA, S., and YAMAUCHI, M. Characteristics of electric performance and key factors of a hybrid piezo/triboelectric generator for wave energy harvesting. Sustainable Energy Technologies and Assessments, 50, 101757 (2022) |
44 | WANG, S., LIN, L., XIE, Y., JING, Q., NIU, S., and WANG, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13, 2226- 2233 (2013) |
45 | LIN, Z., WU, Z., ZHANG, B., WANG, Y. C., GUO, H., LIU, G., CHEN, C., CHEN, Y., YANG, J., and WANG, Z. L. A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Advanced Materials Technologies, 4, 1800360 (2019) |
46 | LI, J., CHENG, L., WAN, N., MA, J., HU, Y., and WEN, J. Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators. Sustainable Energy Technologies and Assessments, 60, 103466 (2023) |
47 | YANG, Y., ZHANG, H., CHEN, J., JING, Q., ZHOU, Y. S., WEN, X., and WANG, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 7, 7342- 7351 (2013) |
48 | WANG, S., XIE, Y., NIU, S., LIN, L., and WANG, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 26, 2818- 2824 (2014) |
49 | WANG, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7, 9533- 9557 (2013) |
50 | KARAPETYAN, A. V. Modelling of frictional forces in the dynamics of a sphere on a plane. Journal of Applied Mathematics and Mechanics, 74, 380- 383 (2010) |
51 | MU, J., ZOU, J., SONG, J., HE, J., HOU, X., YU, J., HAN, X., FENG, C., HE, H., and CHOU, X. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Conversion and Management, 254, 115151 (2022) |
52 | CHANDRASEKARAN, S., BOWEN, C., ROSCOW, J., ZHANG, Y., DANG, D. K., KIM, E. J., MISRA, R. D. K., DENG, L., CHUNG, J. S., and HUR, S. H. Micro-scale to nano-scale generators for energy harvesting: self powered piezoelectric, triboelectric and hybrid devices. Physics Reports, 792, 1- 33 (2019) |
53 | TAN, D., ZHOU, J., WANG, K., CAI, C., and XU, D. Modeling and analysis of the friction in a nonlinear sliding-mode triboelectric energy harvester. Acta Mechanica Sinica, 38, 521330 (2022) |
54 | FU, Y., OUYANG, H., and DAVIS, R. B. Effects of electrical properties on vibrations via electromechanical coupling in triboelectric energy harvesting. Journal of Physics D: Applied Physics, 53, 215501 (2020) |
55 | FU, Y., OUYANG, H., and BENJAMIN DAVIS, R. Nonlinear structural dynamics of a new sliding-mode triboelectric energy harvester with multistability. Nonlinear Dynamics, 100, 1941- 1962 (2020) |
56 | PAN, D., FAN, B., QI, X., YANG, Y., and HAO, X. Investigation of PTFE tribological properties using molecular dynamics simulation. Tribology Letters, 67, 28 (2019) |
57 | BISWAS, S. K., and VIJAYAN, K. Friction and wear of PTFE — a review. Wear, 158, 193- 211 (1992) |
58 | UNAL, H., MIMAROGLU, A., KADIOGLU, U., and EKIZ, H. Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions. Materials & Design, 25, 239- 245 (2004) |
59 | ZOBOVA, A. A. A review of models of distributed dry friction. Journal of Applied Mathematics and Mechanics, 80, 141- 148 (2016) |
60 | ZIEGLER, F. D'Alembert's principle and Lagrange equations of motion. Mechanics of Solids and Fluids, Springer, New York, 565–590 (1995) |
61 | FANG, H., and WANG, K. W. Piezoelectric vibration-driven locomotion systems — exploiting resonance and bistable dynamics. Journal of Sound and Vibration, 391, 153- 169 (2017) |
62 | LENG, Y., TAN, D., LIU, J., ZHANG, Y., and FAN, S. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. Journal of Sound and Vibration, 406, 146- 160 (2017) |
63 | AGASHE, J. S., and ARNOLD, D. P. A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions. Journal of Physics D: Applied Physics, 41, 105001 (2008) |
[1] | F. J. GARCÍA-GARCÍA, P. FARIÑAS-ALVARIÑO. On the analytical solution of transient friction in channel flows [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1447-1466. |
[2] | Chen AN, Jiaxi ZHOU, Kai WANG. Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 603-618. |
[3] | M. RAHMAN, M. TURKYILMAZOGLU, Z. MUSHTAQ. Effects of multiple shapes for steady flow with transformer oil+Fe3O4+TiO2 between two stretchable rotating disks [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 373-388. |
[4] | Zheng GONG, Yinxiao ZHANG, Ernian PAN, Chao ZHANG. Three-dimensional general magneto-electro-elastic finite element model for multiphysics nonlinear analysis of layered composites [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 53-72. |
[5] | Pengxu GUO, Yueting ZHOU. Exact analysis of the orientation-adjusted adhesive full stick contact of layered structures with the asymmetric bipolar coordinates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 883-898. |
[6] | Liang ZHAO, Jiajia SUN, Xian WANG, Li ZENG, Chunlei WANG, Yusong TU. System-size effect on the friction at liquid-solid interfaces [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 471-478. |
[7] | Shuang LIU, Runze ZHANG, Qingyun WANG, Xiaoyan HE. Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1833-1846. |
[8] | Dalin TAN, Jifu ZHOU, Xu WANG, Zhan WANG. Combined effects of topography and bottom friction on shoaling internal solitary waves in the South China Sea [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 421-434. |
[9] | Yitong FAN, Cheng CHENG, Weipeng LI. Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(3): 331-342. |
[10] | Xudong ZHENG, Runsen ZHANG, Qi WANG. Comparison and analysis of two Coulomb friction models on the dynamic behavior of slider-crank mechanism with a revolute clearance joint [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1239-1258. |
[11] | Ming PAN, Qingxiang LI, Shuai TANG, Yuhong DONG. Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(4): 477-488. |
[12] | J. NAGLER. Jeffery-Hamel flow of non-Newtonian fluid with nonlinear viscosity and wall friction [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(6): 815-830. |
[13] | Yun PENG, Yadong WEI, Ming ZHOU. Efficient modeling of cable-pulley system with friction based on arbitrary-Lagrangian-Eulerian approach [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1785-1802. |
[14] | Ziyao XU, Qi WANG, Qingyun WANG. Numerical method for dynamics of multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1733-1752. |
[15] | H. BENAISSA, EL-H. ESSOUFI, R. FAKHAR. Existence results for unilateral contact problem with friction of thermo-electro-elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 911-926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||