[1] |
ROE, P. L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372 (1981)
|
[2] |
TORO, E. F., SPRUCE, M., and SPEARES, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25–34 (1994)
|
[3] |
GODUNOV, S. K. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik, 47, 357–393 (1959)
|
[4] |
QUIRK, J. J. A contribution to the great Riemann solver debate. International Journal for Numerical Methods in Fluids, 18(6), 555–574 (1994)
|
[5] |
LIOU, M. S. Mass flux schemes and connection to shock instability. Journal of Computational Physics, 160, 623–648 (2000)
|
[6] |
XU, K. and LI, Z. W. Dissipative mechanism in Godunov-type schemes. International Journal for Numerical Methods in Fluids, 37, 1–22 (2001)
|
[7] |
HARTEN, A., LAX, P. D., and LEER, B. V. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, Springer Berlin Heidelberg, Berlin, 53–79 (1997)
|
[8] |
SIMON, S. and MANDAL, J. C. A simple cure for numerical shock instability in the HLLC Riemann solver. Journal of Computational Physics, 378, 477–496 (2019)
|
[9] |
PANDOLFI, M. and D’AMBROSIO, D. Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon. Journal of Computational Physics, 166, 271–301 (2001)
|
[10] |
SANDERS, R., MORANO, E., and DRUGUET, M. C. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. Journal of Computational Physics, 145, 511–537 (1998)
|
[11] |
SHEN, Z. J., YAN, W., and YUAN, G. W. A robust HLLC-type Riemann solver for strong shock. Journal of Computational Physics, 309, 185–206 (2016)
|
[12] |
HU, L. J., YUAN, H. Z., and ZHAO, K. L. A shock-stable HLLEM scheme with improved contact resolving capability for compressible Euler flows. Journal of Computational Physics, 453, 110947 (2022)
|
[13] |
LIU, L. Q., LI, X., and SHEN, Z. J. Overcoming shock instability of the HLLE-type Riemann solvers. Journal of Computational Physics, 418, 109628 (2020)
|
[14] |
KEMM, F. Heuristical and numerical considerations for the carbuncle phenomenon. Applied Mathematics and Computation, 320, 596–613 (2018)
|
[15] |
CHEN, Z. Q., HUANG, X. D., REN, Y. X., XIE, Z. F., and ZHOU, M. Mechanism study of shock instability in Riemann-solver-based shock-capturing scheme. AIAA Journal, 56(9), 3636–3651 (2018)
|
[16] |
CHEN, Z. Q., HUANG, X. D., REN, Y. X., XIE, Z. F., and ZHOU, M. Mechanism-derived shock instability elimination for Riemann-solver-based shock-capturing scheme. AIAA Journal, 56(9), 3652–3666 (2018)
|
[17] |
XIE, W. J., TIAN, Z. Y., ZHANG, Y., HANG, Y., and REN, W. J. Further studies on numerical instabilities of Godunov-type schemes for strong shocks. Computers & Mathematics with Applications, 102, 65–86 (2021)
|
[18] |
FLEISCHMANN, N., ADAMI, S., HU, X. Y., and ADAMS, N. A. A low dissipation method to cure the grid-aligned shock instability. Journal of Computational Physics, 401, 109004 (2020)
|
[19] |
FLEISCHMANN, N., ADAMI, S., and ADAMS, N. A. A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation. Journal of Computational Physics, 423, 109762 (2020)
|
[20] |
GUILLARD, H. and VIOZAT, C. On the behaviour of upwind schemes in the low Mach number limit. Computers & Fluids, 28, 63–86 (1999)
|
[21] |
GUILLARD, H. and MURRONE, A. On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Computers & Fluids, 33, 655–675 (2004)
|
[22] |
GUILLARD, H. and NKONGA, B. On the behaviour of upwind schemes in the low Mach number limit: a review. Handbook of Numerical Analysis, 18, 203–231 (2017)
|
[23] |
DUMBSER, M., MORSCHETTA, J. M., and GRESSIER, J. A matrix stability analysis of the carbuncle phenomenon. Journal of Computational Physics, 197, 647–670 (2004)
|
[24] |
EINFELDT, B., MUNZ, C. D., ROE, P. L., and SJOGREEN, B. On Godunov-type methods near low density. Journal of Computational Physics, 92, 273–295 (1991)
|
[25] |
RIEPER, F. On the Behaviour of Numerical Schemes in the Low Mach Number Regime, Ph.D. dissertation, Brandenburg Technical University, Cottbus (2008)
|
[26] |
KLEIN, R. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics, I, one-dimensional flow. Journal of Computational Physics, 121, 213–217 (1995)
|
[27] |
LANDAU, L. D. and LIFSHITZ, E. M. Fluid Mechanics, 2nd. ed., Pergamon Press, Oxford (1987)
|
[28] |
LUBCHICH, A. A. and PUDOVKIN, M. I. Interaction of small perturbations with shock waves. Physics of Fluids, 16, 4489–4505 (2004)
|
[29] |
MCKENZIE, J. F. and WESTPHAL, K. O. Interaction of linear waves with oblique shock waves. Physics of Fluids, 11, 2350–2362 (1968)
|
[30] |
SHEN, Z. J., YAN, W., and YUAN, G. W. A stability analysis of hybrid schemes to cure shock instability. Communications in Computational Physics, 15, 1320–1342 (2014)
|