Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (6): 1107-1124.doi: https://doi.org/10.1007/s10483-025-3260-7
Previous Articles Next Articles
B. J. GIREESHA†(), K. J. GOWTHAM
Received:
2024-12-19
Revised:
2025-04-13
Published:
2025-06-06
Contact:
B. J. GIREESHA E-mail: bjgireesu@gmail.com2010 MSC Number:
B. J. GIREESHA, K. J. GOWTHAM. Thermal radiation impact on hybrid nanocomposite flow in stretchable channels: a Darcy-Forchheimer model with the Taylor wavelet approach. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 1107-1124.
Table 1
Review of past studies"
Reference | Hybrid nanofluid | Darcy-Forchheimer model | Heat flux | Method |
---|---|---|---|---|
[ | Yes | Yes | No | Runge-Kutta-Fehlberg 4th/5th order method |
[ | No | Yes | Yes | Numerical differential solver |
[ | No | No | No | Galerkin finite element method (FEM) |
[ | Yes | No | No | Runge-Kutta-Fehlberg 4th/5th order method |
Present | Yes | Yes | Yes | Taylor wavelet method |
[1] | JEFFERY, G. B. L. The two-dimensional steady motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 29(172), 455–465 (1915) |
[2] | HAMEL, G. Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 25, 34–60 (1917) |
[3] | SHEIKHOLESLAMI, M., GANJI, D. D., ASHORYNEJAD, H. R., and ROKNI, H. B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Applied Mathematics and Mechanics (English Edition), 33(1), 25–36 (2012) https://doi.org/10.1007/s10483-012-1531-7 |
[4] | KURTULMUŞ, N., ZONTUL, H., and SAHIN, B. Heat transfer and flow characteristics in a sinusoidally curved converging-diverging channel. International Journal of Thermal Sciences, 148, 106163 (2020) |
[5] | ULLAH, M. Z., ABUZAID, D., ASMA, M., and BARIQ, A. Couple stress hybrid nanofluid flow through a converging-diverging channel. Journal of Nanomaterials, 2021, 2355258 (2021) |
[6] | HAFEEZ, M., SAJJAD, R., and HASHIM. Heat transfer attributes of MoS2/Al2O3 hybrid nanomaterial flow through converging/diverging channels with shape factor effect. Advances in Mechanical Engineering, 13(5), 16878140211021289 (2021) |
[7] | BISWAL, U. and CHAKRAVERTY, S. Investigation of Jeffery-Hamel flow for nanofluid in the presence of a magnetic field by a new approach in the optimal homotopy analysis method. Journal of Applied and Computational Mechanics, 8(1), 48–59 (2022) |
[8] | ADNAN and ASHRAF, W. Heat transfer in tetra-nanofluid between converging/diverging channel under the influence of thermal radiations by using Galerkin finite element method. Waves in Random and Complex Media (2023) https://doi.org/10.1080/17455030.2023.2171154 |
[9] | GNANAPRASANNA, K. and SINGH, A. K. A numerical approach of forced convective MHD Casson hybrid nanofluid flows exposed to Joule heating and viscous dissipation over a diverging channel. Journal of Porous Media, 27, 1–21 (2024) |
[10] | WHITAKER, S. Flow in porous media I: a theoretical derivation of Darcy's law. Transport in Porous Media, 1, 3–25 (1986) |
[11] | HASSANIZADEH, S. M. and GRAY, W. G. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 13(4), 169–186 (1990) |
[12] | BEAR, J. and BACHMAT, Y. Introduction to Modeling of Transport Phenomena in Porous Media, Springer Science & Business Media, Dordrecht (2012) |
[13] | PAL, D. and MONDAL, H. Hydromagnetic convective diffusion of species in a Darcy-Forchheimer porous medium with a non-uniform heat source/sink and variable viscosity. International Communications in Heat and Mass Transfer, 39(7), 913–917 (2012) |
[14] | ALHADRI, M., RAZA, J., YASHKUN, U., LUND, L. A., MAATKI, C., KHAN, S. U., and KOLSI, L. Response surface methodology (RSM) and artificial neural network (ANN) simulations for thermal flow hybrid nanofluid flow with Darcy-Forchheimer effects. Journal of the Indian Chemical Society, 99(8), 100607 (2022) |
[15] | MAATOUG, S., BABU, K. H., DEEPTHI, V. V. L., GHACHEM, K., RAGHUNATH, K., GANTEDA, C., and KHAN, S. U. Variable chemical species and thermo-diffusion Darcy-Forchheimer squeezed flow of Jeffrey nanofluid in a horizontal channel with viscous dissipation effects. Journal of the Indian Chemical Society, 100(1), 100831 (2023) |
[16] | CHOI, U. Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Fluids, 231, 99–105 (1995) |
[17] | LACERDA, S. H., PARK, J. J., MEUSE, C., PRISTINSKI, D., BECKER, M. L., KARIM, A., and DOUGLAS, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 4(1), 365–379 (2010) |
[18] | SHAH, M., BADWAIK, V. D., and DAKSHINAMURTHY, R. Biological applications of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 14(1), 344–362 (2014) |
[19] | SHAHZAD, F., JAMSHED, W., ASLAM, F., BASHIR, R., EL DIN, E. M. T., KHALIFA, H. A. W., and ALANZI, A. M. MHD pulsatile flow of blood-based silver and gold nanoparticles between two concentric cylinders. Symmetry, 14(11), 2254 (2022) |
[20] | MAKINDE, O. D. Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. International Communications in Heat and Mass Transfer, 32(10), 1411–1419 (2005) |
[21] | SHAFIQ, A., HAMMOUCH, Z., and SINDHU, T. N. Bioconvective MHD flow of tangent hyperbolic nanofluid with Newtonian heating. International Journal of Mechanical Sciences, 133, 759–766 (2017) |
[22] | AMAN, S., AL-MDALLAL, Q., and KHAN, I. Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium. Journal of King Saud University-Science, 32(1), 450–458 (2020) |
[23] | AMAN, S., KHAN, I., ISMAIL, Z., SALLEH, M. Z., and AL-MDALLAL, Q. M. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Scientific Reports, 7(1), 2445 (2017) |
[24] | AZIMI, M. and RIAZI, R. MHD copper-water nanofluid flow and heat transfer through a convergent-divergent channel. Journal of Mechanical Science and Technology, 30, 4679–4686 (2016) |
[25] | KHAN, U., AHMED, N., and MOHYUD-DIN, S. T. Thermo-diffusion, diffusion-thermo, and chemical reaction effects on MHD flow of viscous fluid in convergent and divergent channels. Chemical Engineering Science, 141, 17–28 (2016) |
[26] | USMAN, M., HAQ, R. U., HAMID, M., and WANG, W. Least square study of heat transfer of water-based Cu and Ag nanoparticles along a converging/diverging channel. Journal of Molecular Liquids, 249, 856–867 (2018) |
[27] | AKINSHILO, A. T. Flow and heat transfer of nanofluid with injection through an expanding or contracting porous channel under a magnetic force field. Engineering Science and Technology, an International Journal, 21(3), 486–494 (2018) |
[28] | ABBAS, A., JEELANI, M. B., and ALHARTHI, N. H. Darcy-Forchheimer relation influence on MHD dissipative third-grade fluid flow and heat transfer in a porous medium with Joule heating effects: a numerical approach. Processes, 10(5), 906 (2022) |
[29] | SHAFIQ, A., ÇOLAK, A. B., and SINDHU, T. N. Significance of bioconvective flow of MHD thixotropic nanofluid passing through a vertical surface by machine learning algorithm. Chinese Journal of Physics, 80, 427–444 (2022) |
[30] | SHAFIQ, A., ÇOLAK, A. B., SINDHU, T. N., and ABUSHAL, T. A. Investigating the sensitivity of nanofluid flow around a cylindrical disk: a study of Walter's B nanofluid using response surface methodology and artificial neural networks. Journal of Engineering Research (2024) https://doi.org/10.1016/j.jer.2024.12.010 |
[31] | CHEN, C. F. and HSIAO, C. H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proceedings-Control Theory and Applications, 144(1), 87–94 (1997) |
[32] | SADEGHIAN, A., KARBASSI, S., HUSHMANDASL, M., and HEYDARI, M. Numerical solution of the time-fractional telegraph equation by the Chebyshev wavelet method. International Journal of Theoretical and Applied Physics, 2, 163–181 (2012) |
[33] | RAHIMKHANI, P., ORDOKHANI, Y., and BABOLIAN, E. A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numerical Algorithms, 74, 223–245 (2017) |
[34] | XU, X. and XU, D. Legendre wavelets direct method for the numerical solution of time-fractional order telegraph equations. Mediterranean Journal of Mathematics, 15, 27 (2018) |
[35] | SHAH, F. A. and ABASS, R. Solution of fractional oscillator equations using ultraspherical wavelets. International Journal of Geometric Methods in Modern Physics, 16(5), 1950075 (2019) |
[36] | GIREESHA, B. J. and GOWTHAM, K. J. Efficient hypergeometric wavelet approach for solving Lane-Emden equations. Journal of Computational Science, 82, 102392 (2024) |
[37] | RAMESH, G. K., SHEHZAD, S. A., and TLILI, I. Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model. Applied Mathematics and Mechanics (English Edition), 41(5), 699–710 (2020) https://doi.org/10.1007/s10483-020-2605-7 |
[38] | ULLAH, S., ALI, A., ULLAH, I., and ISRAR, M. Thermodynamic analysis of magnetized carbon nanotubes (CNTs) conveying ethylene glycol (EG) based nanofluid flow through a porous convergent/divergent channel in the existence of Lorentz force and solar radiation. Journal of Nanofluids, 13(2), 505–512 (2024) |
[39] | VINUTHA, K., SHILPA, B., PRASAD, K. V., KUMAR, R. N., GOWDA, R. J. P., MUHAMMAD, T., KUMAR, R., and KARTHIK, K. Dynamics of pollutant discharge concentration, nanoparticle diameter, and solid-fluid interfacial layer on nanofluid flow past a convergent/divergent channel. BioNanoScience, 14(3), 2218–2227 (2024) |
[40] | KHAN, U., ADNAN AHMED, N., MOHYUD-DIN, S. T., BALEANU, D., KHAN, I., and NISAR, K. S. A novel hybrid model for Cu-Al2O3/H2O nanofluid flow and heat transfer in convergent/divergent channels. Energies, 13, 1686 (2020) |
[41] | TURKYILMAZOGLU, M. Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Computers & Fluids, 100, 196–203 (2014) |
[42] | SAKTHI, I., DAS, R., and REDDY, P. B. A. Entropy generation on MHD flow of second-grade hybrid nanofluid flow over a converging/diverging channel: an application in hyperthermia therapeutic aspects. The European Physical Journal Special Topics, 233(6), 1233–1249 (2024) |
[43] | DOGONCHI, A. S. and GANJI, D. D. Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. Journal of Molecular Liquids, 220, 592–603 (2016) |
[44] | MOHYUD-DIN, S. T., KHAN, U., AHMED, N., and HASSAN, S. M. Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Applied Sciences, 5(4), 1639–1664 (2015) |
[1] | H. HOSSEINI, O. BALILASHAKI. Dynamic stress concentration in an infinitely long cylindrical cavity due to a point spherical source embedded within a fluid-saturated poroelastic formation of infinite extent [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 139-156. |
[2] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[3] | L.I. KUZMINA, Y.V. OSIPOV, A.R. PESTEREV. Deep bed filtration model for cake filtration and erosion [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 355-372. |
[4] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[5] | K. RAMESH, M. G. REDDY, B. SOUAYEH. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 593-606. |
[6] | T. HAYAT, K. MUHAMMAD, A. ALSAEDI. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1787-1798. |
[7] | L. I. KUZMINA, Y. V. OSIPOV, T. N. GORBUNOVA. Asymptotics for filtration of polydisperse suspension with small impurities [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 109-126. |
[8] | P. K. YADAV, A. TIWARI, P. SINGH. Motion through spherical droplet with non-homogenous porous layer in spherical container [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1069-1082. |
[9] | T. SAEED, I. A. ABBAS. Analysis of thermal responses in a two-dimensional porous medium caused by pulse heat flux [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 927-938. |
[10] | G. K. RAMESH, S. A. SHEHZAD, I. TLILI. Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 699-710. |
[11] | T. HAYAT, F. HAIDER, T. MUHAMMAD, A. ALSAEDI. Darcy-Forchheimer flow by rotating disk with partial slip [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 741-752. |
[12] | S. A. SHEHZAD, S. U. KHAN, Z. ABBAS, A. RAUF. A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 521-532. |
[13] | B. J. GIREESHA, B. NAGARAJA, S. SINDHU, G. SOWMYA. Consequence of exponential heat generation on non-DarcyForchheimer flow of water based carbon nanotubes driven by a curved stretching sheet [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(11): 1723-1734. |
[14] | H. WAQAS, M. IMRAN, S. U. KHAN, S. A. SHEHZAD, M. A. MERAJ. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1255-1268. |
[15] | Qingxiang LI, Ming PAN, Quan ZHOU, Yuhong DONG. Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 1041-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||