Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (6): 1187-1214.doi: https://doi.org/10.1007/s10483-025-3262-9
Yudong LI1,2,3, Yan LI1,2,†(), Chunfa WANG1,2, P. JOLI3, Zhiqiang FENG1,2,3
Received:
2024-12-24
Revised:
2025-04-23
Published:
2025-06-06
Contact:
Yan LI E-mail: yanli@swjtu.edu.cnSupported by:
2010 MSC Number:
Yudong LI, Yan LI, Chunfa WANG, P. JOLI, Zhiqiang FENG. Numerical investigation on a comprehensive high-order finite particle scheme. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 1187-1214.
Table 1
Relative L2-norm errors of different numerical schemes in 2D cases"
Method | First-order | Second-order in form of finite-difference | Second-order in form of indexes |
---|---|---|---|
FPM | |||
KGC | |||
DFP | |||
SPH | 0.007 8 | 0.007 8 | 0.015 5 (a) |
HFPM | |||
HKGC | |||
HDFP | |||
HSPH | 0.007 8 | 0.007 8 | 0.565 9 (b) |
Note: (a) denotes nested sum, and (b) denotes direct high-order discretization |
Table 2
Relative L2-norm errors on different numerical schemes in 3D cases"
Method | First-order | Second-order on form of finite-difference | Second-order on form of indexes |
---|---|---|---|
FPM | |||
KGC | |||
DFP | |||
SPH | 0.002 5 | 0.002 5 | 0.005 1 (a) |
HFPM | |||
HKGC | |||
HDFP | 0.681 9 (b) | ||
HSPH | 0.002 5 | 0.002 5 | 0.994 4 (b) |
Note: (a) denotes nested sum, and (b) denotes direct high-order discretization |
Table 3
Convergence of relative L2-norm errors on different numerical schemes"
Method | First-order | Second-order in form of finite-difference | Second-order in form of indexes | |
---|---|---|---|---|
0.05 | 0.001 5 (a) | |||
FPM | 0.01 | 0.001 1 | ||
0.005 | 0.003 8 | |||
0.05 | 0.001 5 (a) | |||
KGC | 0.01 | 0.001 1 | ||
0.005 | 0.003 8 | |||
0.05 | 0.001 5 (a) | |||
DFP | 0.01 | 0.001 1 | ||
0.005 | 0.003 8 | |||
0.05 | 0.003 3 | 0.002 8 | 0.005 4 (a) | |
SPH | 0.01 | 0.002 6 | 0.002 9 | 0.005 0 (a) |
0.005 | 0.002 5 | 0.004 6 | 0.004 8 (a) | |
0.05 | ||||
HFPM | 0.01 | 0.001 1 | ||
0.005 | 0.003 8 | 0.001 1 (b) | ||
0.05 | ||||
HKGC | 0.01 | 0.001 1 | ||
0.005 | 0.003 8 | 0.002 4 (b) | ||
0.05 | 0.681 8 (b) | |||
HDFP | 0.01 | 0.001 1 | 0.681 0 (b) | |
0.005 | 0.003 8 | 0.681 9 (b) | ||
0.05 | 0.003 3 | 0.002 8 | 0.994 3 (b) | |
HSPH | 0.01 | 0.002 6 | 0.002 9 | 0.993 3 (b) |
0.005 | 0.002 5 | 0.004 6 | 0.994 4 (b) | |
Note: (a) denotes nested sum, and (b) denotes direct high-order discretization |
Table 4
Relative L2-norm errors of different modes of particle distributions"
Method | Mode of particle distribution | First-order | Second-order in form of finite-difference | Second-order in form of indexes |
---|---|---|---|---|
Uniform | 0.001 6 | |||
FPM | PST | 0.646 9 | 0.002 2 (a) | |
Arbitrary | 0.001 5 | 12.886 0 | 0.033 9 (a) | |
Uniform | 0.001 6 | |||
KGC | PST | 1.233 9 | 0.003 4 (a) | |
Arbitrary | 0.001 5 | 23.356 0 | 0.058 4 (a) | |
Uniform | 0.001 6 | |||
DFP | PST | 0.012 6 | 1.216 3 | 0.236 7 (a) |
Arbitrary | 0.112 4 | 23.061 0 | 3.250 0 (a) | |
Uniform | 0.007 8 | 0.007 9 | 0.015 6 (a) | |
SPH | PST | 0.022 7 | 1.179 0 | 0.356 7 (a) |
Arbitrary | 0.174 3 | 21.629 0 | 4.118 4 (a) | |
Uniform | 0.001 6 | |||
HFPM | PST | 0.650 7 | ||
Arbitrary | 11.142 0 | 0.001 8 (b) | ||
Uniform | 0.001 6 | |||
HKGC | PST | 1.227 5 | 0.001 1 (b) | |
Arbitrary | 20.086 2 | 0.001 3 (b) | ||
Uniform | 0.001 6 | 0.326 4 (b) | ||
HDFP | PST | 0.012 6 | 1.216 3 | 1.810 5 (b) |
Arbitrary | 0.112 4 | 23.061 0 | 15.833 0 (b) | |
Uniform | 0.007 8 | 0.007 9 | 0.565 8 (b) | |
HSPH | PST | 0.022 7 | 1.179 0 | 2.090 8 (b) |
Arbitrary | 0.174 3 | 21.629 0 | 17.180 0 (b) | |
Note: (a) denotes nested sum, and (b) denotes direct high-order discretization |
Table 5
Relative L2-norm errors adopting different smoothing kernel functions"
Distribution | Method (kernel) | First-order | Second-order in form of finite-difference | Second-order in form of nested sum |
---|---|---|---|---|
Uniform | FPM (K1) | |||
FPM (K2) | ||||
KGC (K1) | ||||
KGC (K2) | ||||
DFP (K1) | ||||
DFP (K2) | ||||
SPH (K1) | 0.002 5 | 0.002 5 | 0.005 1 | |
SPH (K2) | 0.002 3 | 0.002 3 | 0.004 6 | |
Arbitrary | FPM (K1) | 0.006 2 | 0.403 7 | 0.007 1 |
FPM (K2) | 0.005 4 | 0.320 7 | 0.005 8 | |
KGC (K1) | 0.007 8 | 0.598 9 | 0.022 6 | |
KGC (K2) | 0.007 3 | 0.476 0 | 0.019 5 | |
DFP (K1) | 0.064 6 | 0.596 7 | 0.100 7 | |
DFP (K2) | 0.056 6 | 0.474 5 | 0.081 9 | |
SPH (K1) | 0.086 5 | 0.590 1 | 0.121 4 | |
SPH (K2) | 0.076 0 | 0.470 9 | 0.100 5 | |
Note: kernel (K1) denotes quintic kernel, and kernel (K2) denotes cubic spline kernel |
[1] | BELYTSCHKO, T., KRONGAUZ, Y., ORGAN, D., FLEMING, M., and KRYSL, P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 3–47 (1996) |
[2] | ANTUONO, M., COLAGROSSI, A., MARRONE, S., and LUGNI, C. Propagation of gravity waves through an SPH scheme with numerical diffusive terms. Computer Physics Communications, 182(4), 866–877 (2011) |
[3] | CHENG, Y. J., LI, Y., TAO, L., JOLI, P., and FENG, Z. Q. An adaptive smoothed particle hydrodynamics for metal cutting simulation. Acta Mechanica Sinica, 38(10), 422186 (2022) |
[4] | ZHANG, Z. L. and LIU, M. B. Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces. Engineering Analysis with Boundary Elements, 83, 141–157 (2017) |
[5] | XIANG, H. Y. and CHEN, X. W. Numerical study on breakup of DebriSat under hypervelocity impact. Acta Astronautica, 217, 62–74 (2024) |
[6] | MONAGHAN, J. J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543–574 (1992) |
[7] | YE, T., PAN, D. Y., HUANG, C., and LIU, M. B. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Physics of Fluids, 31(1), 011301 (2019) |
[8] | SHADLOO, M. S., OGER, G., and TOUZÉ, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Computers and Fluids, 136, 11–34 (2016) |
[9] | XU, F., WANG, J. Y., YANG, Y., WANG, L., DAI, Z., and HAN, R. Q. On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics. Acta Mechanica Sinica, 39(2), 722185 (2023) |
[10] | SIGALOTTI, L. D. G., RENDÓN, O., KLAPP, J., VARGAS, C. A., and CRUZ, F. A new insight into the consistency of the SPH interpolation formula. Applied Mathematics and Computation, 356, 50–73 (2019) |
[11] | FRANCOMANO, E. and PALIAGA, M. Highlighting numerical insights of an efficient SPH method. Applied Mathematics and Computation, 339, 899–915 (2018) |
[12] | ANTONELLI, L., FRANCOMANO, E., and GREGORETTI, F. A CUDA-based implementation of an improved SPH method on GPU. Applied Mathematics and Computation, 409, 125482 (2021) |
[13] | PENG, P. P. and CHENG, Y. M. Analyzing three-dimensional transient heat conduction problems with the dimension splitting reproducing kernel particle method. Engineering Analysis with Boundary Elements, 121, 180–191 (2020) |
[14] | LI, S. F., QIAN, D., LIU, W. K., and BELYTSCHKO, T. A meshfree contact-detection algorithm. Computer Methods in Applied Mechanics and Engineering, 190(24-25), 3271–3292 (2001) |
[15] | LI, Y. D., FU, Z. J., and TANG, Z. C. Generalized finite difference method for bending and modal analysis of functionally graded carbon nanotube-reinforced composite plates. Chinese Journal of Theoretical and Applied Mechanics, 54(2), 414–424 (2022) |
[16] | LI, P. W., FAN, C. M., YU, Y. Z., and SONG, L. N. A meshless generalized finite difference scheme for the stream function formulation of the Navier-Stokes equations. Engineering Analysis with Boundary Elements, 152, 154–168 (2023) |
[17] | FU, Z. J., XIE, Z. Y., JI, S. Y., TSAI, C. C., and LI, A. L. Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Engineering, 195, 106736 (2020) |
[18] | CHEN, J. K., BERAUN, J. E., and CARNEY, T. C. A corrective smoothed particle method for boundary value problems in heat conduction. International Journal for Numerical Methods in Engineering, 46(2), 231–252 (1999) |
[19] | LIU, M. B., XIE, W. P., and LIU, G. R. Modeling incompressible flows using a finite particle method. Applied Mathematical Modelling, 29(12), 1252–1270 (2005) |
[20] | OÑATE, E., IDELSOHN, S., ZIENKIEWICZ, O. C., and TAYLOR, R. L. A finite point method in computational mechanics: applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 39(22), 3839–3866 (1996) |
[21] | TIWARI, S. and KUHNERT, J. Modeling of two-phase flows with surface tension by finite pointset method (FPM). Journal of Computational and Applied Mathematics, 203(2), 376–386 (2007) |
[22] | SAUCEDO-ZENDEJO, F. R. and RESÉNDIZ-FLORES, E. O. Meshfree numerical approach based on the finite pointset method for static linear elasticity problems. Computer Methods in Applied Mechanics and Engineering, 372, 113367 (2020) |
[23] | SAUCEDO-ZENDEJO, F. R., MEDRANO-MENDIETA, J. L., and NUÑEZ-BRIONES, A. G. A GFDM approach based on the finite pointset method for two-dimensional piezoelectric problems. Engineering Analysis with Boundary Elements, 163, 12–22 (2024) |
[24] | SAUCEDO-ZENDEJO, F. R. A novel meshfree approach based on the finite pointset method for linear elasticity problems. Engineering Analysis with Boundary Elements, 136, 172–185 (2022) |
[25] | SAUCEDO-ZENDEJO, F. R. and RESÉNDIZ-FLORES, E. O. A new approach for the numerical simulation of free surface incompressible flows using a meshfree method. Computer Methods in Applied Mechanics and Engineering, 324, 619–639 (2017) |
[26] | RESÉNDIZ-FLORES, E. O. and SAUCEDO-ZENDEJO, F. R. Meshfree numerical simulation of free surface thermal flows in mould filling processes using the finite pointset method. International Journal of Thermal Sciences, 127, 29–40 (2018) |
[27] | JIANG, T., REN, J. L., YUAN, J. Y., ZHOU, W., and WANG, D. S. A least-squares particle model with other techniques for 2D viscoelastic fluid/free surface flow. Journal of Computational Physics, 407, 109255 (2020) |
[28] | YANG, Y., XU, F., ZHANG, M., and WANG, L. An effective improved algorithm for finite particle method. International Journal of Computational Methods, 13(4), 1641009 (2016) |
[29] | WANG, L., XU, F., and YANG, Y. An improved specified finite particle method and its application to transient heat conduction. International Journal of Computational Methods, 14(5), 1750050 (2017) |
[30] | BONET, J. and LOK, T. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180(1-2), 97–115 (1999) |
[31] | HUANG, C., LEI, J. M., LIU, M. B., and PENG, X. Y. A kernel gradient free (KGF) SPH method. International Journal for Numerical Methods in Fluids, 78(11), 691–707 (2015) |
[32] | ZHANG, Z. L. and LIU, M. B. A decoupled finite particle method for modeling incompressible flows with free surfaces. Applied Mathematical Modelling, 60, 606–633 (2018) |
[33] | NASAR, A. M. A., FOURTAKAS, G., LIND, S. J., KING, J. R. C., ROGERS, B. D., and STANSBY, P. K. High-order consistent SPH with the pressure projection method in 2-D and 3-D. Journal of Computational Physics, 444, 110563 (2021) |
[34] | LIU, M. B. and LIU, G. R. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of Computational Methods in Engineering, 17, 25–76 (2010) |
[35] | LI, Y. D., LI, Y., and FENG, Z. Q. A coupled particle model with particle shifting technology for simulating transient viscoelastic fluid flow with free surface. Journal of Computational Physics, 488, 112213 (2023) |
[36] | LIU, M. B. and LIU, G. R. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 56(1), 19–36 (2006) |
[37] | LIU, M. B., LIU, G. R., and LAM, K. Y. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 155(2), 263–284 (2003) |
[38] | CHERNIH, A. and HUBBERT, S. Closed form representations and properties of the generalised Wendland functions. Journal of Approximation Theory, 177, 17–33 (2014) |
[39] | FATEHI, R. and MANZARI, M. T. Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Computers and Mathematics with Applications, 61(2), 482–498 (2011) |
[40] | MONAGHAN, J. J. and RAFIEE, A. A simple SPH algorithm for multi-fluid flow with high density ratios. International Journal for Numerical Methods in Fluids, 71(5), 537–561 (2013) |
[41] | LI, Y. D., LI, Y., JOLI, P., CHEN, H. J., and FENG, Z. Q. Extension of finite particle method simulating thermal-viscoelastic flow and fluid-rigid body interactional process in weakly compressible smoothed particle hydrodynamics scheme. Physics of Fluids, 36(4), 043307 (2024) |
[42] | LI, Y. D., LI, Y., and FENG, Z. Q. Extension of decoupled finite particle method to simulate non-isothermal free surface flow. International Journal of Multiphase Flow, 167, 104532 (2023) |
[43] | SIGALOTTI, L. D. G., KLAPP, J., RENDÓN, O., VARGAS, C. A., and PEÑA-POLO, F. On the kernel and particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 108, 242–255 (2016) |
[44] | XU, R., STANSBY, P. K., and LAURENCE, D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. Journal of Computational Physics, 228(18), 6703–6725 (2009) |
[45] | LIND, S. J., XU, R., STANSBY, P. K., and ROGERS, B. D. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 231(4), 1499–1523 (2012) |
[46] | LIU, Z., WEI, G. F., and WANG, Z. M. The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials. Applied Mathematical Modelling, 85, 244–272 (2020) |
[47] | FLYER, N., BARNETT, G. A., and WICKER, L. J. Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations. Journal of Computational Physics, 316, 39–62 (2016) |
[48] | VOROZHTSOV, E. V. and KISELEV, S. P. Higher-order symplectic integration techniques for molecular dynamics problems. Journal of Computational Physics, 452, 110905 (2022) |
[49] | KOTYCZKA, P. and LEFEVRE, L. Discrete-time port-Hamiltonian systems: a definition based on symplectic integration. Systems and Control Letters, 133, 104530 (2019) |
[1] | Zhonggui YI, Baozeng YUE, Mingle DENG. Chebyshev spectral variational integrator and applications [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 753-768. |
[2] | Wei YI, Qiuhua RAO, Wenbo MA, Dongliang SUN, Qingqing SHEN. A new analytical-numerical method for calculating interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1539-1560. |
[3] | H. WAQAS, M. IMRAN, S. U. KHAN, S. A. SHEHZAD, M. A. MERAJ. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1255-1268. |
[4] | Jizeng WANG, Lei ZHANG, Youhe ZHOU. A simultaneous space-time wavelet method for nonlinear initial boundary value problems [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(11): 1547-1566. |
[5] | Yue-wu LIU;Wei-ping OU-YANG;Pei-hua ZHAO;Qian LU;Hui-jun FANG. Numerical well test for well with finite conductivity vertical fracture in coalbed [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 729-740. |
[6] | Zhi-jie GU;Yong-ji TAN. Fundamental solution method for inverse source problem of plate equation [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(12): 1513-1532. |
[7] | ZHANG Li-Xiang;GUO Ya-Kun;ZHANG Hong-Ming. Fully coupled flow-induced vibration of structures under small deformation with GMRES method [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(1): 87-96. |
[8] | WU Wang-Yi;LIN Guang. Basic function scheme of polynomial type [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(9): 1091-1103. |
[9] | Xiao-Hui LIU;Bo YAN;Hong-Yan ZHANG;Song ZHOU. Nonlinear numerical simulation method for galloping of iced conductor [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 489-501. |
[10] | ZHUANG Ping-Hui;LIU Qing-Xia. Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(12): 1533-. |
[11] | ZHU Zheng-you;LI Gen-guo;CHENG Chang-jun. A NUMERICAL METHOD FOR FRACTIONAL INTEGRAL WITH APPLICATIONS [J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(4): 373-384. |
[12] | Yuan Xiangjiang;Zhou Heng. NUMERICAL SCHEMES WITH HIGH ORDER OF ACCURACY FOR THE COMPUTATION OF SHOCK WAVES [J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(5): 489-500. |
[13] | Wu Jike;W H Hui;Ding Hongli. ARC-LENGTH METHOD FOR DIFFERENTIAL EQUATIONS [J]. Applied Mathematics and Mechanics (English Edition), 1999, 20(8): 936-942. |
[14] | Sun Jian’an;Zhu Zhengyou. A MIXTURE DIFFERENTIAL QUADRATURE METHOD FOR SOLVING TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Applied Mathematics and Mechanics (English Edition), 1999, 20(12): 1358-1366. |
[15] | Cheng Changiun;Yang Xiao. VNONLINEAR STABILITY ANALYSIS OF A CLAMPED ROD CARRYING ELECTRIC CURRENT [J]. Applied Mathematics and Mechanics (English Edition), 1997, 18(9): 825-834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||