| [1] |
CARLSTEDT, D. and ASP, L. E. Performance analysis framework for structural battery composites in electric vehicles. Composites Part B: Engineering, 186, 107822 (2020)
|
| [2] |
LI, H., SONG, Y. C., LU, B., and ZHANG, J. Q. Effects of stress dependent electrochemical reaction on voltage hysteresis of lithium ion batteries. Applied Mathematics and Mechanics (English Edition), 39(10), 1453–1464 (2018) https://doi.org/10.1007/s10483-018-2373-8
|
| [3] |
SILVA, G., DUTRA, T. A., NUNES-PEREIRA, J., and SILVA, A. P. Coupled and decoupled structural batteries: a comparative analysis. Journal of Power Sources, 604, 234392 (2024)
|
| [4] |
KALNAUS, S., ASP, L. E., LI, J., VEITH, G. M., NANDA, J., DANIEL, C., CHEN, X. C., WESTOVER, A., and DUDNEY, N. J. Multifunctional approaches for safe structural batteries. Journal of Energy Storage, 40, 102747 (2021)
|
| [5] |
ISMAIL, K. B. M., KUMAR, M. A., MAHALINGAM, S., RAJ, B., and KIM, J. Carbon fiber-reinforced polymers for energy storage applications. Journal of Energy Storage, 84, 110931 (2024)
|
| [6] |
BOUTON, K., SCHNEIDER, L., ZENKERT, D., and LINDBERGH, G. A structural battery with carbon fibre electrodes balancing multifunctional performance. Composites Science and Technology, 256, 110728 (2024)
|
| [7] |
XU, J. and VARNA, J. Matrix and interface microcracking in carbon fiber/polymer structural micro-battery. Journal of Composite Materials, 53(25), 3615–3628 (2019)
|
| [8] |
PUPURS, A. and VARNA, J. Modeling mechanical stress and exfoliation damage in carbon fiber electrodes subjected to cyclic intercalation/deintercalation of lithium ions. Composites Part B: Engineering, 65, 69–79 (2014)
|
| [9] |
GUO, K., SRIDHAR, N., FOO, C. C., and SRINIVASAN, B. M. Energy release rate for steady-state fiber debonding in structural battery composites. Composites Science and Technology, 247, 110416 (2024)
|
| [10] |
XU, J. and VARNA, J. Matrix and interface microcracking in carbon fiber/polymer structural micro-battery. Journal of Composite Materials, 53(25), 3615–3628 (2019)
|
| [11] |
XU, J. and VARNA, J. Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading. Composites Science and Technology, 186, 107891 (2020)
|
| [12] |
RUI, B., LU, B., SONG, Y. C., and ZHANG, J. Q. A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries. Applied Mathematics and Mechanics (English Edition), 44(4), 547–560 (2023) https://doi.org/10.1007/s10483-023-2976-9
|
| [13] |
XU, J., LINDBERGH, G., and VARNA, J. Multiphysics modeling of mechanical and electrochemical phenomena in structural composites for energy storage: single carbon fiber micro-battery. Journal of Reinforced Plastics and Composites, 37(10), 701–715 (2018)
|
| [14] |
LI, S., THOULESS, M. D., WAAS, A. M., SCHROEDER, J. A., and ZAVATTIERI, P. D. Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite. Composites Science and Technology, 65(2), 281–293 (2005)
|
| [15] |
MCCARTNEY, L. N. New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 425(1868), 215–244 (1989)
|
| [16] |
CHEN, Z. and YAN, W. A shear-lag model with a cohesive fibre-matrix interface for analysis of fibre pull-out. Mechanics of Materials, 91, 119–135 (2015)
|
| [17] |
CHANDRA, N. Evaluation of interfacial fracture toughness using cohesive zone model. Composites Part A: Applied Science and Manufacturing, 33(10), 1433–1447 (2002)
|
| [18] |
GUO, G. and ZHU, Y. Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. Journal of Applied Mechanics, 82(3), 031005 (2015)
|
| [19] |
YOON, S., HAN, B., and WANG, Z. On moisture diffusion modeling using thermal-moisture analogy. Journal of Electronic Packaging, 129(4), 421–426 (2007)
|
| [20] |
LEE, S., YANG, J., and LU, W. Debonding at the interface between active particles and PVDF binder in Li-ion batteries. Extreme Mechanics Letters, 6, 37–44 (2016)
|
| [21] |
XU, R. and ZHAO, K. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 121, 258–280 (2018)
|
| [22] |
KJELL, M. H., ZAVALIS, T. G., BEHM, M., and LINDBERGH, G. Electrochemical characterization of lithium intercalation processes of PAN-based carbon fibers in a microelectrode system. Journal of the Electrochemical Society, 160(9), A1473 (2013)
|
| [23] |
DUAN, S., LIU, F., PETTERSSON, T., CREIGHTON, C., and ASP, L. E. Determination of transverse and shear moduli of single carbon fibres. Carbon, 158, 772–782 (2020)
|
| [24] |
IHRNER, N., JOHANNISSON, W., SIELAND, F., ZENKERT, D., and JOHANSSON, M. Structural lithium ion battery electrolytes via reaction induced phase-separation. Journal of Materials Chemistry A, 5(48), 25652–25659 (2017)
|
| [25] |
XU, J., JOHANNISSON, W., JOHANSEN, M., LIU, F., ZENKERT, D., LINDBERGH, G., and ASP, L. E. Characterization of the adhesive properties between structural battery electrolytes and carbon fibers. Composites Science and Technology, 188, 107962 (2020)
|
| [26] |
LU, B., SONG, Y., GUO, Z., and ZHANG, J. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids and Structures, 50(14-15), 2495–2507 (2013)
|
| [27] |
GWAK, Y., JIN, Y., and CHO, M. Cohesive zone model for crack propagation in crystalline silicon nanowires. Journal of Mechanical Science and Technology, 32, 3755–3763 (2018)
|
| [28] |
TARAFDER, P., DAN, S., and GHOSH, S. Finite deformation cohesive zone phase field model for crack propagation in multi-phase microstructures. Computational Mechanics, 66(3), 723–743 (2020)
|
| [29] |
PUPURS, A. and VARNA, J. Steady-state energy release rate for fiber/matrix interface debond growth in unidirectional composites. International Journal of Damage Mechanics, 26(4), 560–587 (2017)
|