| [1] |
ROZENSWEIG, R. E. Ferrohydrodynamics, Cambridge University Press, Cambridge (1985)
|
| [2] |
DORFMANN, A. and OGDEN, R. W. Nonliner magnetoelastic deformations of elastomers. Acta Mechanica, 167(1-2), 13–28 (2003)
|
| [3] |
DORFMANN, A. and OGDEN, R. W. Nonliner magnetoelastic deformations. Quarterly Journal of Mechanics and Applied Mathematics, 57(4), 599–622 (2004)
|
| [4] |
ROGOVOY, A. A. and STOLBOVA, O. S. An approach to describe the twinning and detwinning processes of the martensitic structure in ferromagnetic alloy with shape memory in magnetic and force fields. Mechanics of Advanced Materials and Structures, 32(5), 794–814 (2025)
|
| [5] |
HALDAR, K., KIEFER, D., and LAGOUDAS, D. C. Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philosophical Magazine, 91(32), 4126–4157 (2011)
|
| [6] |
KANKANALA, S. V. and TRIANTAFYLLIDIS, N. On finitely strained magnetorheological elastomers. Journal of the Mechanics and Physics of Solids, 52, 2869–2908 (2004)
|
| [7] |
HIRSINGER, L. and BILLARDON, R. Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Transactions on Magnetics, 31(3), 1877–1880 (1995)
|
| [8] |
STEIGMANN, D. J. Equilibrium theory for magnetic elastomers and magnetoelastic membranes. International Journal of Non-Linear Mechanics, 39, 1193–1216 (2004)
|
| [9] |
RINALDI, C. and BRENNER, H. Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Physical Review E, 65, 036615 (2002)
|
| [10] |
XU, Y. X., ZHU, J., ZHENG, L. C., and SI, X. H. Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condition. Applied Mathematics and Mechanics (English Edition), 41(11), 1611–1630 (2020) https://doi.org/10.1007/s10483-020-2657-9
|
| [11] |
IBTESAM, M., NADEEM, S., and ALZABUT, J. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake-induced faults. Applied Mathematics and Mechanics (English Edition), 45(12), 2215–2230 (2024) https://doi.org/10.1007/s10483-024-3190-9
|
| [12] |
KORN, G. A. and KORN, T. M. Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review, McGraf-Hill Book Company, New York (1961)
|
| [13] |
BIRMAN, M. S., VILENKIN, N. Y., GORIN, E. A., ZABREYKO, P. P., IOKHVIDOV, I. S., KADETS, M. I., KOSTYUCHENKO, A. G., KRASNOSELSKIY, M. A., KRANE, S. G., MITYAGIN, B. S., PETUNIN, Y. I., RUTITSKIY, Y. B., SEMENOV, E. M., SOBOLEV, V. I., STETSENKO, V. Y., FADDEEV, L. D., and CITLANADZE, E. S. Functional Analysis (in Russian), Nauka, Moscow (1972)
|