[1] S. J. Liao, The homotopy analysis method and its applications in mechanics, Ph. D.Dissertation, Shanghai Jiaotong University (1992).
[2] S. J. Liao, A kind of linear invariance under homotopy and some simple applications of it in mechanics, Bericht Nr. 520. Institut fuer Schiffbau der Universitaet Hamburg (1992).
[3] S. J. Liao. A second-order approximate analytical solution of a simple pendulum by the process analysis method, J. Applied Mechanics, 14 (1992), 1173-1191.
[4] S. J. Liao, Application of process analysis method to the solution of 2D non-linear progressive gravity waves, J. Ship, Rasearch, 36 (1992), 30-37.
[5] S. J. Liao, A kind of approximate solution technique which does not depend upon small parameters: a special example, Int. J. Non-Linear Mechanics. 30 (1905), 371-380.
[6] S. J. Liao. A kind of approximate solution technique which does not depend upon small parameters (2): an application in fluid mechanics, Int. J. Non-Linear Mechanics, 32, 5(1997), 815-822.
[7] S. J. Liao, Boundary Elements, X Ⅶ, Computational Mechanics Publications,Southampton (1995), 67 -74.
[8] S. J. Liao, High-order BEM formulations for strongly nonlinear problems governed by quite general nonlinear differential operators, Int. J. Numerical Methods in Fluide, 23 (1996), 739-751.
[9] S. J. Liao and A. T. Chwang, The general BEM for strongly non-linear problems, Int. J.Numerical Methods in Fluids, 23 (1996), 467-483.
[10] S. J. Liao, Homotopy analysis method and its applications in mathematics, Journal of Bosic Science and Engineering, 5, 2 (1997). 111-125.
[11] H. Blasius, Grenzschichten in Fluessigkeiten mit kleiner Reibung, Z. Math. u. Phys., 56 (1908). 1-37..
[12] L. Howarth. On the calculation of steady now in the boundary layer near the surface of a cylinder in a stream. ARC RM, 1632 (1935).
[13] L. Howarth. On the solution of tile laminar boundary layer equations. Proc. Roy. Soc.London A, 164 (1938), 547-579. |