[1] Biot A M.The theory of propagation of elastic w ave in a fluid-saturated porous solid,,Low-frequency range;Ⅱ Higher-frequency range[J].J Acoust Soc Amer,1956,28(2):168~178,179~191. [2] Zienkiewicz O C.Shiomi T.Dynamic behavior of saturated porous media:the generalized Biot formulation and its numerical solution[J].Internat J Numer Anal Methods Geomech,1984,8(1):71~96. [3] Simon B R,Wu S S,Zienkiew icz O C,et al.Evaluation of u-ω and u-π finite element method for dynamic response of saturated poro us media using one-dimensional model[J].Internat J Numer Anal Methods Geomech,1986,10:461~482. [4] de Bo er R.Highlight in the historical development of the porous media theory:toward aconsitent macroscopic theory[J].Appl Mech Rev,1995,49(4):201~262. [5] Bowen R M.Incompressible porous media by use of the theory of mixtures[J].Internat J Engrg Sci,1980,18(1):19~45. [6] Bowen R M.Compressible porous media by use of the theory of mixtures[J].Internat J Engrg Sci,1982,20(6):697~735. [7] de Boer R,Ehlers R,Liu Z.One-dimensional transient wave propagation in fluid-saturate dincompressible porous media[J].Arch Appl Mech,1993,63:59~72. [8] Zienkiew icz O C,Taylor R L.The Finite Element Method[M].Vol 14th edn.London:McGraw-Hill,1989. [9] Hughes T J R,Pister K S,Tay lor R L.Implicit-explicit finite elements in nonlinear transient analysis[J].Comput Methods Appl Mech Engr g,1979,17/18:159~182. |