THEORY AND ALGORITHM OF OPTIMAL CONTROL SOLUTION TO DYNAMIC SYSTEM PARAMETERS IDENTIFICATION (Ⅱ) ──STOCHASTIC SYSTEM PARAMETERS IDENTIFICATION AND APPLICATION EXAMPLE
Wu Zhigang1, Wang Benli1, Ma Xingrui2
1. Department of Astronautics and Mechanics, Harbin Institute of Technology, Harbin 150001, P. R. China; 2. Chinese Academy of Space Technology, Beijing 100081, P. R. China
Wu Zhigang;Wang Benli;Ma Xingrui. THEORY AND ALGORITHM OF OPTIMAL CONTROL SOLUTION TO DYNAMIC SYSTEM PARAMETERS IDENTIFICATION (Ⅱ) ──STOCHASTIC SYSTEM PARAMETERS IDENTIFICATION AND APPLICATION EXAMPLE. Applied Mathematics and Mechanics (English Edition), 1999, 20(3): 241-246.
[1] Cai Jinshi. Identification and Modeling of Dynamic System [M]. Beijing: National DefenseIndustry Publishing House, 1991 (in Chinese).
[2] Huang Guangyuan, Liu Xiaojun. Inverse Problem of Mathematical Physics [M]. Jinan:Shangdong Scientific and Technical Publishing House, 1993 (in Chinese).
[3] Wang Kangning. Mathematical Theory of Optimal Control[M]. Beijing: National DefenseIndustry PUblishing House, 1995 (in Chinese).
[4] Yong Jiongndn. Dynamic Programming and HJB Equation [M]. Shanhai: Shanhai Scientific and Technical Publishing House, 1992 (in Chinese).
[5] Stengel R F. Stochastic Optimal Control [M]. New York: John Wiley & Sons, Inc., 1986.
[6] Bryson A E, Ho Yuchi. Applied Optimal Control[M]. New York: Hemisphere PUblishingCorporation, 1975.
[7] Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations [J]. TransAmer Math Soc, 1983,277(1):1-42.
[8] Crandall M G, Evans L C, Lions P L. Some properties of viscosity solutions of HamiltonJacobi equation[J]. Trans Amer Math Soc, 1984, 282(2): 487-502.