[1] Nayfeb A H, Mook D T. Nonlinear Oscillations[M]. New York: John Wiley & Sons, 1979. [2] Langford W F, Zhan K, Dynamics of 1/1 resonance in vortex-induced vibration[A]. In: M P Paidoussis Ed. ASME Fundamental Aspects of Fluid-Structure Interactions [C]. PVP-Vol. 247,Book, No G00728-1992. [3] Leblanc V G, Langford W F. Classification and unfoldings of 1:2 resonant Hopf bifurcation[J]. Arch Rational Mech Anal, 1996, (136):305-357. [4] WU Zhi-qiang. Nonlinear normal modes and Normal Form direct method for nonlinear system having multi-degrees of freedom[D]. Ph D Thesis. Tianjin: University of Tianjin,, 1996. (in Chinese) [5] CHEN Fang-qi, WU Zhi-qiang, CHEN Yu-shu. The high codimensional bifurcations and universal unfolding problems for a class of elastic bodies under a periodic excitation[J]. Acta Mechanica Sinica ,2001,33(3):286- 293. (in Chinese) [6] CHEN Yu-shu, YANG Cai-xia. Dynamic model of a rigid-flexible coupled nonlinear system[J].Chinese Space Sci & Tech ,2000(3):7-12. (in Chinese) [7] CHEN Yu-shu, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: SpringerVerlag, 1998. [8] LU Qi-shao. Bifurcation and Singularity [M]. Shanghai: Shanghai Science and Technology Press,1995. (in Chinese) [9] CHEN Yu-shu. Theory of Bifurcation and Chaos in Nonlinear Vibration System[M]. Beijing:Higher Education Press, 1993. (in Chinese) [10] LU Qi-shao. Qualitative Theory and Geometrical Methods of Ordinary Differential Equations[M].Beijing: Beijing Aerospace University Press, 1988. (in Chinese) [11] Arnold V I. Geometrical Methods in the Theory of Ordinary Differential Equations [M]. 2nd ed.New York: Springer-Verlag, 1988. [12] Golubitsky M, Schaeffer D G. Singularities and Bifurcation Theory,Vol.1[M]. New York: Springer-Verlag, 1985. [13] Chow S N, Hale S. Methods of Bifurcation Theory[M]. New York: Springer-Verlag,1992. |