[1] ZHU Wei-qiu.Random Vibration[M].Beijing:Science Press,1992.(in Chinese) [2] Stratonovitch R L, Romanovskii Y M. Parametric effect of a random force on linear and nonlinear oscillatory systems[A]. In: P T Kuznetsov, R L Stratonovitch, V I Tikhonov,Eds. Nonlinear Translations of Stochastic Process[C]. Oxford: Pegramon,1996. [3] Dimentberg M F, Isikov N E, Model R. Vibration of a system with cubic-non-linear damping and simultaneous periodic and random parametric excitation[J]. Mechanics of Solids,1981,16(1):19-21. [4] Namachchivaya N S. Almost sure stability of dynamical systems under combined harmonic and stochastic excitations[J]. Journal of Sound and Vibration,1991,151(1):77-91. [5] Ariaratnam S T, Tam D S F. Parametric random excitation of a damped Mathieu oscillator[J]. ZAngew Math Mech,1976,56(3):449-452. [6] Dimentberg M F. Statistical Dynamics of Nonlinear and Time-Varying Systems[M]. New York: Wiley,1988. [7] RONG Hai-wu, XU Wei, FANG Tong. Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation[J]. Journal of Sound and Vibration, 1998,210(4):483-515. [8] Wedig W V. Invariant measures and Lipunov exponents for generalized parameter fluctuations[J]. Structural Safety,1990,8(1):13-25. [9] Nayfeh A H. Introduction to Perturbation Techniques[M]. New York: Wiley,1981. [10] Rajan S, Davies H G. Multiple time scaling of the response of a Duffing oscillator to narrow-band excitations[J]. Journal of Sound and Vibration,1988,123(3):497-506. [11] Nayfeh A H, Serhan S J. Response statistics of nonlinear systems to combined deterministic and random excitations[J]. International Journal of Nonlinear Mechanics,1990,25(5):493-509. [12] Oseledec V I. A multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems[J]. Transaction of the Moscow Mathematical Society,1968,19(2):197-231. [13] Wiggins S. Global Bifurcations and Chaos-Analysis Methods[M]. New York: Springer-Verlag.1990. |