NEW METHOD TO OPTION PRICING FOR THE GENERAL BLACK-SCHOLES MODEL-AN ACTUARIAL APPROACH
YAN Hai-feng1,2, LIU San-yang 1
1. Department of Applied Mathematics, Xidian University, Xi’an 710071, P.R. China; 2. Department of Mathematics, Henan Normal University, Xinxiang, Henan 453002, P.R.China
YAN Hai-feng;LIU San-yang . NEW METHOD TO OPTION PRICING FOR THE GENERAL BLACK-SCHOLES MODEL-AN ACTUARIAL APPROACH. Applied Mathematics and Mechanics (English Edition), 2003, 24(7): 826-835.
[1] Merton R. Optimum consumption and portfolio rules in continuous time model [J]. Journal of Economic Theory, 1971,3(3):373 - 413. [2] Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973,81(4):633 - 654. [3] Duffle D. Security Markets: Stochastic Models [M]. Boston: Academic Press, 1988. [4] Bladt M, Rydberg H H. An actuarial approach to option pricing under the physical measure and without market assumptions[J]. Insurance: Mathematics and Economics, 1998,22(1):65 - 73. [5] Duffle D. Dynamic Asset Pricing Theory[M]. Princeton,New Jersey:Princeton University Press,1996. [6] Merton R. Continuous- Time Finance [M]. Oxford: Blacwell Publishers, 1990. [7] Kouritzin M A, Deli Li. On explicit solution to stochastic differential equation [J]. Stochastic Analysis and Applications, 2000,18 (4): 571 - 580. [8] YUE Hong. Applications of martingale method in pricing of contingent claim [J]. Journal of Engineering Mathematics,2000,17(1): 135 - 138. [9] Roos Cox J C,RubinsteinS A. Option pricing:A simplified approach[J]. Journal of Economics,1979,7(2):229 - 263. [10] Bernt,φksendal. Stochasitc Differential Equations[M]. Fourth Ed. New York: Springer-Verlag,1995.