[1] Voiculescu D. The analogues of entropy and of Fisher' s information measure in free probability theory-Ⅲ: the absence of Cartan subalgebras[J]. Geometric and Functional Analysis, 1996,6(1):172-199.
[2] Ge L. Applications of free entropy to finite yon Neumann algebras Ⅱ[J].Annals of Mathematies,1998,147(2): 143-157.
[3] Voiculescu D. The analogues of entropy and of Fisher' s information measure in free probability theory-Ⅴ: Noncommutative Hilbert transforms[J]. Inventiones Mathematicae, 1998,132(1): 189-227.
[4] Voiculescu D. The analogues of entropy and of Fisher' s information measure in free probability theory-Ⅵ:liberation and mutual free information[J]. Advances in Mathematics, 1999,146(1): 101-166.
[5] Voiculescu D. Operations on certain non-commutative operator-valued random variables[J].Asterisque, 1995,232(1):243-275.
[6] Sunder V S. An Invitation to von Neumann Algebras[M]. New York: Springer-Verlag, 1987.
[7] Cover T M, Thomas J A. Elements of Information Theory[M]. Chichester: John Wiley & Sons, Inc,1976.
[8] Speicher R. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory[J]. Memoirs of AMS, 1998, (627): 1-88.
[9] Nica A, Shlyakhtenko D, Speicher R. Operator-valued distributions-1: characterizations of freeness[J]. International Mathematics Research Notices,2002, (29): 1509-1538. |