[1] Gurtin, M. E. and Williams, W. O. On the Clausius-Duhem inequality. Zeitschrift für Angewandte Mathematik und Physik, 7, 626-633 (1966)
[2] Gurtin, M. E. and Williams, W. O. An axiomatic foundation for continuum thermodynamics. Archieve for Rational Mechanics and Analysis, 26, 83-117 (1967)
[3] Chen, P. J. and Gurtin, M. E. On a theory of heat conduction involving two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 19, 614-627 (1968)
[4] Chen, P. J., Gurtin, M. E., and Williams, W. O. A note on non-simple heat conduction. Zeitschrift für Angewandte Mathematik und Physik, 19, 969-970 (1968)
[5] Chen, P. J., Gurtin, M. E., and Williams, W. O. On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 20, 107-112 (1969)
[6] Warren, W. E. and Chen, P. J. Wave propagation in two temperatures theory of thermoelasticity. Acta Mechanica, 16, 83-117 (1973)
[7] Lesan, D. On the thermodynamics of non-simple elastic materials with two temperatures. Journal of Applied Mathematics and Physics, 21, 583-591 (1970)
[8] Puri, P. and Jordan, P. M. On the propagation of harmonic plane waves under the two-temperature theory. International Journal of Engineering Sciences, 44, 1113-1126 (2006)
[9] Quintanilla, R. On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica, 168, 61-73 (2004)
[10] Lord, H. and Shulman, Y. A generalized dynamical theory of thermoelasticity. Journal of Mechanics and Physics of Solids, 15, 299-309 (1967)
[11] Ignaczak, J. Uniqueness in generalized thermoelasticity. Journal of Thermal Stresses, 2, 171-175 (1979)
[12] Ignaczak, J. A note on uniqueness in thermoelasticity with one relaxation time. Journal of Thermal Stresses, 5, 257-263 (1982)
[13] Dhaliwal, R. S. and Sherief, H. Generalized thermoelasticity for anisotropic media. Quarterly of Applied Mathematics, 33, 1-8 (1980)
[14] Sherief, H. On uniqueness and stability in generalized thermoelasticity. Quarterly of Applied Mathematics, 45, 773-778 (1987)
[15] Ackerman, C. C., Bertman, B., Fairbank, H. A., and Guyer, R. A. Second sound in solid helium. Physical Review Letter, 16, 789-791 (1966)
[16] Ackerman, C. C. and Guyer, R. A. Temperature pulses in dielectric solids. Annals of Physics, 50, 128-185 (1968)
[17] Ackerman, C. C. and Overton, Jr., W. C. Second sound in solid helium-3. Physical Review Letter, 22, 764-766 (1969)
[18] Von Gutfeld, R. J. and Nethercot, Jr., A. H. Temperature dependent of heat pulse propagation in sapphire. Physical Review Letter, 17, 868-871 (1966)
[19] Guyer, R. A. and Krumhansi, J. A. Solution of the linearized phonon Boltzmann equation. Physical Review, 148(2), 766-778 (1966)
[20] Taylor, B., Marris, H. J., and Elbaum, C. Phonon focusing in solids. Physical Review Letter, 23, 416-419 (1969)
[21] Rogers, S. J. Transport of heat and approach to second sound in some isotropically pure Alkali-Halide crystals. Physical Review B, 3, 1440-1457 (1971)
[22] Jackson, H. E. and Walker, C. T. Thermal conductivity, second sound and phonon-phonon interactions in NaF. Physical Review B, 3, 1428-1439 (1971)
[23] Jackson, H. E., Walker, C. T., and McNelly, T. F. Second sound in NaF. Physical Review Letter, 25, 26-28 (1970)
[24] Green, A. E. and Lindsay, K. A. Thermoelasticity. Journal of Elasticity, 2, 1-7 (1972)
[25] Ghosh, M. K. and Kanoria, M. Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green-Lindsay theory. Acta Mechanica, 207, 51-67 (2009)
[26] Hetnarski, R. B. and Ignaczak, J. Generalized thermoelasticity: closed form solutions. Journal of Thermal Stresses, 16, 473-498 (1993)
[27] Hetnarski, R. B. and Ignaczak, J. Generalized thermoelasticity: response of semi-space to a short laser pulse. Journal of Thermal Stresses, 17, 377-396 (1994)
[28] Green, A. E. and Naghdi, P. M. A reexamination of the basic results of thermomechanics. Proceedings of the Royal Society of London Series A, 432, 171-194 (1991)
[29] Green, A. E. and Naghdi, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 252-264 (1992)
[30] Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189-208 (1993)
[31] Bagri, A. and Eslami, M. R. Generalized coupled thermoelasticity of disks based on Lord-Shulman model. Journal of Thermal Stresses, 27, 691-704 (2004)
[32] Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole. Far East Journal of Applied Mathematics, 24, 201-217 (2006)
[33] Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole. International Journal of Solids and Structures, 44, 2961-2971 (2007)
[34] Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. European Journal of Mechanics A/Solids, 26, 969-981 (2007)
[35] Das, N. C. and Lahiri, A. Thermoelastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium. International Journal of Pure and Applied Mathematics, 31, 19-32 (2000)
[36] Roychoudhuri, S. K. and Dutta, P. S. Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. International Journal of Solids and Structures, 42, 4192-4203 (2005)
[37] Roychoudhuri, S. K. and Bandyopadhyay, N. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation. International Journal of Mathematics and Mathematical Sciences, 1, 99-107 (2004)
[38] Ghosh, M. K. and Kanoria, M. Generalized thermoelastic problem of a spherically isotropic elastic medium containing a spherical cavity. Journal of Thermal Stresses, 31, 665-679 (2008)
[39] Tzou, D. Y. A unified field approach for heat conduction from macro to micro scales. ASME Journal of Heat Transfer, 117, 8-16 (1995)
[40] Chandrasekharaiah, D. S. Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Review, 51, 705-729 (1998)
[41] Roychoudhuri, S. K. One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects. Journal of Mechanics of Materials and Structures, 2, 489-503 (2007)
[42] Roychoudhuri, S. K. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231-238 (2007)
[43] Kar, A. and Kanoria, M. Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. European Journal of Mechanics A/Solids, 28, 757-767 (2009)
[44] Kar, A. and Kanoria, M. Generalized thermo-visco-elastic problem of a spherical shell with threephase-lag effect. Applied Mathematics and Modelling, 33, 3287-3298 (2009)
[45] Quintanilla, R. and Racke, R. A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 51, 24-29 (2008)
[46] Quintanilla, R. Spatial behaviour of solutions of the three-phase-lag heat equation. Applied Mathematics and Computation, 213, 153-162 (2009)
[47] Youssef, H. M. Theory of two-temperature generalized thermoelasticity. IMA Journal of Applied Mathematics, 71, 1-8 (2006)
[48] Youssef, H. M. and Al-Harby, A. H. State-space approach of two-temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different type thermal loading. Archives of Applied Mechanics, 77, 675-687 (2007)
[49] Youssef, H. M. and Al-Lehaibi, E. A. State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. International Journal of Solids and Structures, 44, 1550- 1562 (2007)
[50] Youssef, H. M. Two-dimensional problem of a two-temperature genearlized thermoelastic halfspace subjected to a ramp-type heating. Computational Mathematics and Modeling, 19(2), 201- 216 (2008)
[51] Kumar, R., Prasad, R., and Mukhopadhyay, S. Variational and reciprocal principles in twotemperature generalized thermoelasticity. Thermal Stresses, 33, 161-171 (2010)
[52] Maga¨ne, A. and Quintanilla, R. Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Journal of Mathematics and Mechanics of Solids, 14, 622-634 (2009)
[53] Kumar, R. and Mukhopadhyay, S. Effects of three-phase-lags on generalized thermoelasticity for an infinite medium with a cylindrical cavity. Journal of Thermal Stresses, 32, 1149-1165 (2009)
[54] Youssef, H. M. and El-Bary, A. A. Two-temperature generalized thermoelasticity with variable thermal conductivity. Journal of Thermal Stresses, 33, 187-201 (2010)
[55] Bahar, L. Y. and Hetnarski, R. B. State space approach to thermoelasticity. Proceedings of 6th Canadian Congress of Applied Mechanics, University of British Columbia, Vancouver, Canada, 17-18 (1977)
[56] Bahar, L. Y. and Hetnarski, R. B. Transfer matrix approach to thermoelasticity. Proceedings of 15th Midwest Mechanical Conference, University of Illinois at Chicago, Chicago, 161-163 (1977)
[57] Bahar, L. Y. and Hetnarski, R. B. State space approach to thermoelasticity. Journal of Thermal Stresses, 1, 135-145 (1978)
[58] Anwar, M. and Sherief, H. State space approach to generalized thermoelasticity. Journal of Thermal Stresses, 11, 353-365 (1988)
[59] El-Maghraby, N. M. and Youssef, H. M. State space approach to generalized thermoelastic problem with thermomechanical shock. Journal of Applied Mathematics and Computation, 156, 577-586 (2004)
[60] Honig, G. and Hirdes, U. A method for the numerical inversion of Laplace transform. Journal of Computational and Applied Mathematics, 10, 113-132 (1984) |