[1] Koizumi, M. FGM activities in Japan. Composites Part B: Engineering, 28(1-2), 1-4 (1997)
[2] Fereidoon, A., Asghardokht, S. M., and Mohyeddin, A. Bending analysis of thin functionallygraded plates using generalized differential quadrature method. Archive of Applied Mechanics,81, 1523-1539 (2011)
[3] Zenkour, A. M. A comprehensive analysis of functionally graded sandwich plates, part 1: deflectionand stresses. International Journal of Solids and Structures, 42(18-19), 5224-5242 (2005)
[4] Nguyen, T. K., Sab, K., and Bonnet, G. First-order shear deformation plate models for functionallygraded materials. Composite Structures, 83(1), 25-36 (2008)
[5] Yang, J. and Sheng, H. S. Nonlinear bending analysis of shear deformable functionally gradedplates subjected to thermo-mechanical loads under various boundary conditions. Composites PartB: Engineering, 34(1), 103-115 (2003)
[6] Reddy, J. N. Analysis of functionally graded plates. International Journal for Numerical Methodsin Engineering, 47(1-3), 663-684 (2000)
[7] Wu, C. P. and Li, H. Y. An RMVT-based third-order shear deformation theory of multilayeredfunctionally graded material plates. Composite Structures, 92(10), 2591-2605 (2010)
[8] Gilhooley, D. F., Batra, R. C., Xiao, J. R., McCarthy, M. A., and Gillespie, J. W. Analysis ofthick functionally graded plates by using higher-order shear and normal deformable plate theoryand MLPG method with radial basis functions. Composite Structures, 80(4), 539-552 (2007)
[9] Matsunaga, H. Free vibration and stability of functionally graded plates according to a 2-D higherorderdeformation theory. Composite Structures, 82(4), 499-512 (2008)
[10] Sahraee, S. and Saidi, A. R. Axisymmetric bending analysis of thick functionally graded circularplates using fourth-order shear deformation theory. European Journal of Mechanics A—Solids,28(5), 974-984 (2009)
[11] Batra, R. C. and Vel, S. S. Exact solution for thermoelastic deformations of functionally gradedthick rectangular plates. AIAA Journal, 40(7), 1421-1433 (2001)
[12] Reddy, J. N. and Cheng, Z. Q. Three-dimensional thermomechanical deformations of functionallygraded rectangular plates. European Journal of Mechanics A—Solids, 20(5), 841-855 (2001)
[13] Wen, P. H., Sladek, J., and Sladek, V. Three-dimensional analysis of functionally graded plates.International Journal for Numerical Methods in Engineering, 87(10), 923-942 (2011)
[14] Kashtalyan, M. Three-dimensional elasticity solution for bending of functionally graded rectangularplates. European Journal of Mechanics A—Solids, 23(5), 853-864 (2004)
[15] Huang, Z. Y., Lü, C. F., and Chen, W. Q. Benchmark solutions for functionally graded thick platesresting on Winkler-Pasternak elastic foundations. Composite Structures, 85(1), 95-104 (2008)
[16] Xu, Y. P. and Zhou, D. Three-dimensional elasticity solution of functionally graded rectangularplates with variable thickness. Composite Structures, 91(1), 56-65 (2009)
[17] Alibeigloo, A. Three-dimensional exact solution for functionally graded rectangular plate withintegrated surface piezoelectric layers resting on elastic foundation. Mechanics of Advanced Materialsand Structures, 17, 183-195 (2010)
[18] Wu, C. P., Chiu, K. H., and Wang, Y. M. RMVT-based meshless collocation and element-freeGalerkin methods for the quasi-3D analysis of multilayered composite and FGM plates. CompositeStructures, 93, 923-943 (2011)
[19] Chen, W. Q., Bian, Z. G., and Ding, H. J. Three-dimensional analysis of a thick FGM rectangularplate in thermal environment. Journal of Zhejiang University Science A, 4(1), 1-7 (2003)
[20] Vaghefi, R., Baradaran, G. H., and Koohkan, H. Three-dimensional static analysis of thick functionallygraded plates by using meshless local Petrov-Galerkin (MLPG) method. EngineeringAnalysis with Boundary Elements, 34, 564-573 (2010)
[21] Chen, W. Q., Lü, C. F., and Bian, Z. G. Elasticity solution for free vibration of laminated beams.Composite Structures, 62(1), 75-82 (2003)
[22] Lü, C. F. State-Space-Based Differential Quadrature Method and Its Applications, Ph. D. dissertation,Zhejiang University (2006)
[23] Lü, C. F., Zhang, Z. C., and Chen, W. Q. Free vibration of generally supported rectangular Kirchhoffplates: state-space-based differential quadrature method. International Journal for NumericalMethods in Engineering, 70(12), 1430-1450 (2007)
[24] Lü, C. F., Chen, W. Q., Xu, R. Q., and Lim, C. W. Semi-analytical elasticity solutions forbi-directional functionally graded beams. International Journal of Solids and Structures, 45(1),258-275 (2008)
[25] Lü, C. F., Chen, W. Q., and Shao, J. W. Semi-analytical three-dimensional elasticity solutions forgenerally laminated composite plates. European Journal of Mechanics A—Solids, 27(5), 899-917(2008)
[26] Mori, T. and Tanaka, K. Average stress in matrix and average elastic energy of materials withmisfitting inclusions. Acta Metallurgica, 21(5), 571-574 (1973)
[27] Chen, W. Q. and Ding, H. J. Bending of functionally graded piezoelectric rectangular plates. ActaMechanica Solida Sinica, 13(4), 312-319 (2000)
[28] Sherbourne, A. N. and Pandey, M. D. Differential quadrature method in the buckling analysis ofbeams and composite plates. Computers and Structures, 40(4), 903-913 (1991)
[29] Hill, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physicsof Solids, 13(2), 213-222 (1965)
[30] Voigt, W. Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalender Physik, 274(12), 573-587 (1889)
[31] Librescu, L., Oh, S. Y., and Song, O. Thin-walled beams made of functionally graded materialsand operating in a high temperature environment: vibration and stability. Journal of ThermalStresses, 28(6-7), 649-712 (2005)
[32] Huang, C. S., McGee, O. G., and Chang, M. J. Vibrations of cracked rectangular FGM thickplates. Composite Structures, 93(7), 1747-1764 (2011)
[33] Shen, H. S. and Wang, Z. X. Assessment of Voigt and Mori-Tanaka models for vibration analysisof functionally graded plates. Composite Structures, 94(7), 2197-2208 (2012)
[34] Shen, H. S. Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by anelastic medium. Composite Structures, 94(3), 1144-1154 (2012)
[35] Shackelford, J. F. and Alexander, W. CRC Materials Science and Engineering Handbook, CRCPress, Boca Raton (2000)
[36] Nakamura, T., Wang, T., and Sampath, S. Determination of properties of graded materials byinverse analysis and instrumented indentation. Acta Materialia, 48(17), 4293-4306 (2000) |