[1] Ruth, R. D. A canonical integration technique. IEEE Transactions on Nuclear Science, 30, 2669- 2671 (1983) [2] Feng, K. Difference-schemes for Hamiltonian-formalism and symplectic-geometry. Journal of Computational Mathematics, 4, 279-289 (1986) [3] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin (2002) [4] Hu, W. P., Deng, Z. C., Han, S. M., and Zhang, W. R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics, 235, 394-406 (2013) [5] Bridges, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147-190 (1997) [6] Lewis, D. and Simo, J. C. Conserving algorithms for the dynamics of Hamiltonian-systems on Lie-groups. Journal of Nonlinear Science, 4, 253-299 (1994) [7] Marsden, J. E. and Shkoller, S. Multisymplectic geometry, covariant Hamiltonians, and water waves. Mathematical Proceedings of the Cambridge Philosophical Society, 125, 553-575 (1999) [8] Bridges, T. J. and Reich, S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A, 284, 184-193 (2001) [9] Hu, W. P., Deng, Z. C., and Li, W. C. Multi-symplectic methods for membrane free vibration equation. Applied Mathematics and Mechanics (English Edition), 28, 1181-1189 (2007) DOI 10.1007/s10483-007-0906-2 [10] Hu, W. P., Deng, Z. C., and Han, S. M. An implicit difference scheme focusing on the local conservation properties for Burgers equation. International Journal of Computational Methods, 9, 1240028 (2012) [11] Budd, C. J. and Piggott, M. D. Geometric Integration and Its Applications, Elsevier, the Netherlands, 35-139 (2003) [12] Lambert, J. D. Computational Methods in Ordinary Differential Equations (Introductory Mathematics for Scientists and Engineers), Wiley, New York (1973) [13] Ernst Hairer, C. L. and Wanner, G. Geometric Numerical Integration Illustrated by the Störmer-Verlet Method, Cambridge University Press, Cambridge, 399-450 (2003) |