[1] Pelesko, J. A. and Bernstein, D. H. Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton (2003)
[2] Zhang, W. M., Yan, H., Peng, Z. K., and Meng, G. Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors and Actuators, A: Physical, 214, 187-218 (2014)
[3] Kuang, J. H. and Chen, C. J. Adomian decomposition method used for solving non-linear pull-in behavior in electrostatic micro-actuators. Mathematical and Computer Modelling, 41, 1479-1491 (2005)
[4] Lin, W. H. and Zhao, Y. P. Pull-in instability of micro-switch actuators: model review. Interna- tional Journal of Nonlinear Sciences and Numerical Simulation, 9, 175-183 (2008)
[5] Koochi, A., Kazemi, A. S., Beni, Y. T., Yekrangi, A., and Abadyan, M. Theoretical study of the effect of Casimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method. Physica E: Low-dimensional Systems and Nanostructures, 43, 625-632 (2010)
[6] Ramezani, A., Alasty, A., and Akbari, J. Closed-form solutions of the pull-in instability in nano- cantilevers under electrostatic and intermolecular surface forces. International Journal of Solids and Structures, 44, 4925-4941 (2007)
[7] Lin, W. H. and Zhao, Y. P. Non-linear behavior for nano-scale electrostatic actuators with Casimir force. Chaos, Solitons and Fractals, 23, 1777-1785 (2005)
[8] Koochi, A. and Abadyan, M. Efficiency of modified Adomian decomposition for simulating the instability of nano-electromechanical switches: comparison with the conventional decomposition method. Trends in Applied Sciences Research, 7, 57-67 (2012)
[9] Abadyan, M. R., Beni, Y. T., and Noghrehabadi, A. Investigation of elastic boundary condition on the pull-in instability of beam-type NEMS under van der Waals attraction. Procedia Engineering, 10, 1724-1729 (2011)
[10] Soroush, R., Koochi, A., Kazemi, A. S., Noghrehabadi, A., Haddadpour, H., and Abadyan, M. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Physica Scripta, 82, 045801 (2010)
[11] Salekdeh, A. Y., Koochi, A., Beni, Y. T., and Abadyan, M. Modeling effects of three nano-scale physical phenomena on instability voltage of multi-layer MEMS/NEMS: material size dependency, van der Waals force and non-classic support conditions. Trends in Applied Sciences Research, 7, 1-17 (2012)
[12] Beni, Y. T., Koochi, A., and Abadyan, M. Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E: Low-dimensional Systems and Nanostructures, 43, 979-988 (2011)
[13] Koochi, A., Kazemi, A., Khandani, F., and Abadyan, M. Influence of surface effects on size- dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Physica Scripta, 85, 035804 (2012)
[14] Noghrehabadi, A., Ghalambaz, M., and Ghanbarzadeh, A. A new approach to the electrostatic pull-in instability of nano-cantilever actuators using the ADM-Padé technique. Computers and Mathematics with Applications, 64, 2806-2815 (2012)
[15] Ramezani, A., Alasty, A., and Akbari, J. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations. Nanotechnology, 19, 015501 (2008)
[16] Lin, W. H. and Zhao, Y. P. Dynamic behavior of nano-scale electrostatic actuators. Chinese Physics Letters, 20, 2070-2073 (2003)
[17] Ma, J. B., Jiang, L., and Asokanthan, S. F. Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology, 21, 505708 (2010)
[18] Duan, J. S. and Rach, R. A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. International Journal of Solids and Structures, 50, 3511-3518 (2013)
[19] Israelachvili, J. N. Intermolecular and Surface Forces, Academic Press, London (1992)
[20] Mostepanenko, V. M. and Trunov, N. N. The Casimir Effect and Its Application, Oxford Science Publications, New York (1997)
[21] Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Reports on Progress in Physics, 68, 201-236 (2005)
[22] Rodriguez, A. W., Capasso, F., and Johnson, S. G. The Casimir effect in microstructured geome- tries. Nature Photonics, 5, 211-221 (2011)
[23] Guo, J. G. and Zhao, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43, 675-685 (2006)
[24] Guo, J. G. and Zhao, Y. P. Influence of van der Waals and Casimir forces on electrostatic torsional actuators. Journal of Microelectromechanical Systems, 13, 1027-1035 (2004)
[25] Lin, W. H. and Zhao, Y. P. Stability and bifurcation behaviour of electrostatic torsional NEMS varactor influenced by dispersion forces. Journal of Physics, D: Applied Physics, 40, 1649-1654 (2007)
[26] Duan, J. S., Rach, R., and Wazwaz, A. M. Solution of the model of beam-type micro-and nano- scale electrostatic actuators by a new modified Adomian decomposition method for non-linear boundary value problems. International Journal of Non-Linear Mechanics, 49, 159-169 (2013)
[27] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291-323 (1975)
[28] He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nano-wires. Nano Letters, 8, 1798-1802 (2008)
[29] Wang, G. F. and Feng, X. Q. Surface effects on buckling of nano-wires under uniaxial compression. Applied Physics Letters, 94, 141913 (2009)
[30] Fu, Y. and Zhang, J. Size-dependent pull-in phenomena in electrically actuated nano-beams in- corporating surface energies. Applied Mathematical Modelling, 35, 941-951 (2011)
[31] Miller, R. E. and Shenoy, V. B. Size-dependent elastic properties of nano-sized structural elements. Nanotechnology, 11, 139-147 (2000)
[32] Jiang, L. Y. and Yan, Z. Timoshenko beam model for static bending of nano-wires with surface effects. Physica E: Low-dimensional Systems and Nanostructures, 42, 2274-2279 (2010)
[33] Gupta, R. K. Electrostatic Pull-in Test Structure Design for In-situ Mechanical Property Measure- ments of Microelectromechanical Systems (MEMS), Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge (1997)
[34] Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q. Mechanical design and optimization of capacitive micromachined switch. Sensors Actuators, A: Physical, 93, 273-285 (2001)
[35] Duan, J. S. and Rach, R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order non-linear differential equations. Applied Mathematics and Computation, 218, 4090-4118 (2011) |