[1] Choi, S. U. S. and Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Engineering Division, 231, 99-103(1995)
[2] Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280-289(1999)
[3] Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles:dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei, 4, 227-233(1993)
[4] Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat Fluid Flow, 21, 158-164(2000)
[5] Santra, A. K., Sen, S., and Chakraborty, N. Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. International Journal of Thermal Sciences, 47, 1113-1122(2008)
[6] Khanafer, K., Vafai, K., and Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653(2003)
[7] Cianfrini, C., Corcione, M., Habib, E., and Quintino, A. Buoyancy-induced convection in Al2O3/water nanofluids from an enclosed heater. European Journal of Mechanics B/Fluids, 48, 123-134(2014)
[8] Rashidi, I., Mahian, O., Lorenzini, G., Biserni, C., and Wongwises, S. Natural convection of Al2O3/water nanofluid in a square cavity:effects of heterogeneous heating. International Journal of Heat and Mass Transfer, 74, 391-402(2014)
[9] Ool, E. H. and Popov, V. Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid. International Journal of Thermal Sciences, 65, 178-188(2013)
[10] Garoosi, F., Bagheri, G., and Talebi, F. Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. International Journal of Heat and Mass Transfer, 67, 362-376(2013)
[11] Bouhalleb, M. and Abbassi, H. Natural convection of nanofluids in enclosures with low aspect ratios. International Journal of Hydrogen Energy, 39, 15275-15286(2014)
[12] Abu-Nada, E., Masoud, Z., Oztop, H. F., and Campo, A. Effect of nanofluid variable properties on natural convection in enclosures. International Journal of Thermal Sciences, 49, 479-491(2010)
[13] Seyyedi, S. M., Dayyan, M., Soleimani, S., and Ghasemi, E. Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure. Ain Shams Engineering Journal, 6, 267-280(2015)
[14] Hwang, K. S., Lee, J. H., and Jang, S. P. Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. International Journal of Heat and Mass Transfer, 50, 4003-4010(2007)
[15] Mahmoodi, M. and Sebdani, S. M. Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center. Superlattices and Microstructures, 52, 261-275(2012)
[16] Guo, Y. L., Qin, D. Y., Shen, S. Q., and Bennacer, R. Nanofluid multi-phase convective heat transfer in closed domain:simulation with lattice Boltzmann method. International Communications in Heat and Mass Transfer, 39, 350-354(2012)
[17] Wen, D. S. and Ding, Y. L. Formulation of nanofluids for natural convective heat transfer applications. International Journal of Heat and Flow, 26, 855-864(2005)
[18] Ho, C. J., Liu, W. K., Chang, Y. S., and Lin, C. C. Natural convection heat transfer of aluminawater nanofluid in vertical square enclosures:an experimental study. International Journal of Thermal Sciences, 49, 1345-1353(2010)
[19] Heris, S. Z., Pour, M. B., Mahian, O., and Wongwises, S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer, 73, 231-238(2014)
[20] Li, H. R., He, Y. R., Hu, Y. W., Jiang, B. C., and Huang, Y. M. Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids. International Journal of Heat and Mass Transfer, 91, 385-389(2015)
[21] Moradi, H., Bazooyar, B., Moheb, A., and Etemad, S. G. Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure. Chinese Journal of Chemical Engineering, 23, 1266-1274(2015)
[22] Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M. A., Pop, I., Z. Sahin, A., and Wongwises, S. A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 65, 514-532(2013)
[23] Cho, C. C. Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. International Journal of Heat and Mass Transfer, 77, 818-827(2014)
[24] Shahi, M., Mahmoudi, A. H., and Raouf, A. H. Entropy generation due to natural convection cooling of a nanofluid. International Communications in Heat and Mass Transfer, 38, 972-983(2011)
[25] Sheikhzadeh, G. A., Arefmanesh, A., Kheirkhah, M. H., and Abdollahi, R. Natural convection of Cu-water nanofluid in a cavity with partially active side walls. European Journal of Mechanics B/Fluids, 30, 166-176(2011)
[26] Kefayati, G. H. R., Hosseinizadeh, S. F., Gorji, M., and Sajjadi, H. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 38, 798-805(2011)
[27] Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C. (1980)
[28] Brinkman, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571-581(1952)
[29] Maxwell, J. A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge (1904)
[30] Fusegi, T., Hyun, J. M., Kuwahara, K., and Farouk, B. A numerical study of three dimensional natural convection in a differentially heated cubical enclosure. International Communications in Heat and Mass Transfer, 34, 1543-1557(1991)
[31] Davis, G. D. V. Natural convection of air in a square cavity, a benchmarknumerical solution. International Journal for Numerical Methods in Fluids, 3, 249-264(1983) |