[1] JACOBSON, V. Congestion Avoidance and Control, Artech House, California (1988) [2] ALLMAN, M., PAXSON, V., and Stevens, W. TCP congestion control. RFC 2581(1999) [3] DEB, S. and SRIKANT, R. Global stability of congestion controllers for the Internet. IEEE Transactions on Automatic Control, 48(6), 1055-1060(2003) [4] FLOYD, S. and FALL, K. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Transactions on Networking, 7(4), 458-472(1999) [5] HOE, J. C. Improving the start-up behavior of a congestion control scheme for TCP. ACM SIGCOMM Computer Communication Review, 26(4), 270-280(1996) [6] WANG, Z. and CROWCROFT, J. Eliminating periodic packet losses in the 4.3-Tahoe BSD TCP congestion control algorithm. ACM SIGCOMM Computer Communication Review, 22(2), 9-16(1992) [7] PADHYE, J., FIROIU, V., TOWSLEY, D. F., and KUROSE, J. F. Modeling TCP Reno performance:a simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133-145(2000) [8] PARVEZ, N., MAHANTI, A., and WILLIAMSON, C. An analytic throughput model for TCP NewReno. IEEE/ACM Transactions on Networking, 18(2), 448-461(2010) [9] PEI, L. J., MU, X. M., WANG, R. M., and YANG, J. P. Dynamics of the Intetnet TCP-RED congestion control system. Nonlinear Analysis:Real World Applications, 12(2), 947-955(2011) [10] LAPSLEY, D. E. and LOW, S. Random early marking for Internet congestion control. Proceeding of Global Telecommunications Conference, IEEE, Brazil (1999) [11] ZHAN, Z., ZHU, J., and XU, D. Stability analysis in an AVQ model of Internet congestion control algorithm. The Journal of China Universities of Posts and Telecommunications, 19(4), 22-28(2012) [12] RYU, S., RUMP, C., and QIAO, C. Advances in active queue management (AQM) based TCP congestion control. Telecommunication Systems, 25(3/4), 317-351(2004) [13] CHEN, X., WONG, S. C., TSE, C. K., and LAU, F. Oscillation and period doubling in TCP/RED systems:analysis and verification. International Journal of Bifurcation and Chaos, 18(5), 1459- 1475(2008) [14] GIBBENS, R. J. and KELLY, F. P. Resource pricing and the evolution of congestion control. Automatica, 35(12), 1969-1985(1999) [15] ZHANG, S., XU, J., and CHUNG, K. W. Desynchronization-based congestion suppression for a star-type Internet system with arbitrary dimension. Neurocomputing, 266, 42-55(2017) [16] LOW, S. and PAGANINI, F. Internet congestion control. IEEE Control Systems, 22(1), 28-43(2002) [17] PAGANINI, F., WANG, Z., DOYLE, J., and LOW, S. Congestion control for high performance, stability, and fairness in general networks. IEEE/ACM Transactions on Networking, 13(1), 43-56(2005) [18] KATABI, D., HANDLEY, M., and ROHRS, C. Congestion control for high bandwidth-delay product networks. Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, ACM, Pittsburgh (2002) [19] JOHARI, R. and TAN, D. End-to-end congestion control for the Internet:delays and stability. IEEE/ACM Transactions on Networking, 9(6), 818-832(2001) [20] DONG, T., LIAO, X. F., and HUANG, T. W. Dynamics of a congestion control model in a wireless access network. Nonlinear Analysis:Real World Applications, 14(1), 671-683(2013) [21] MANFREDI, S., TUCCI, E. D., and LATORA, V. Mobility and congestion in dynamical multilayer networks with finite storage capacity. Physical Review Letters, 120(6), 068301(2018) [22] LI, C. G., CHEN, G. R., and LIAO, X. F. Hopf bifurcation in an Internet congestion control model. Chaos, Solitons and Fractals, 19(4), 853-862(2004) [23] CHEN, Z. and YU, P. Hopf bifurcation control for an internet congestion model. International Journal of Bifurcation and Chaos, 15(8), 2643-2651(2005) [24] KELLY, F. P. Mathematical Modelling of the Internet, Springer, Berlin/Heidelberg (2001) [25] HOLLOT, C. V., MISRA, V., TOWSLEY, D., and GONG, W. B. A control theoretic analysis of RED. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society, IEEE, Anchorage (2001) [26] MISRA, V., GONG, W. B., and TOWSLEY, D. Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM, Stockholm (2000) [27] SRIKANT, R. and YING, L. Communication Networks:An optimization, Control and Stochastic Networks Perspective, Cambridge University Press, New York (2014) [28] STÉGER, J., VADERNA, P., and VATTAY, G. On the propagation of congestion waves in the Internet. Physica A:Statistical Mechanics and Its Applications, 360(1), 134-142(2001) [29] XU, W. Y., CAO, J. D., and XIAO, M. Bifurcation analysis of a class of (n+1)-dimension Internet congestion control systems. International Journal of Bifurcation and Chaos, 25(2), 1-17(2015) [30] ZHANG, S., XU, J., and CHUNG, K. W. Stability switch boundaries in an Internet congestion control model with diverse time delays. International Journal of Bifurcation and Chaos, 23, 1330016(2003) [31] XU, C. J., TANG, X. H., and LIAO, M. X. Local hopf bifurcation and global existence of periodic solutions in TCP sysmtem. Applied Mathematics and Mechanics (English Edition), 31(6), 775-786(2010) https://doi.org/10.1007/s10483-010-1312-x [32] WANG, Y., XHEN, J., YANG, Z. M., ZHANG, Z. K., ZHOU, T., and SUN, G. Q. Glaobal analysis of an SIS model with an infective vector on complex networks. Nonlinear Analysis:Real World Applications, 13(2), 543-557(2012) [33] FARIA, T. and MAGALHAES, L. T. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. Journal of Differential Equations, 122(2), 201-224(1995) [34] ENGELBORGHS, K., LUZYANINA, T., SAMAEY, G., ROOSE, D., and VERHEYDEN, K. DDE-BIFTOOL v. 2.03:a Matlab package for bifurcation analysis of delay differential equations. http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml (2007) [35] WANG, Q. and WANG, Z. H. An algorithm for the labeling stable regions of a class of timedelay systems with abscissa. Transactions of Nanjing University of Aeronanutics and Astronautics, 35(1), 94-100(2018) [36] XU, Q. and WANG, Z. H. Exact stability test of neutral delay differential equations via a rough estimation of the testing integral. International Journal of Dynamics and Control, 2(1), 154-163(2014) [37] XU, Q., STEPAN, G., and WANG, Z. H. Delay-dependent stability analysis by using delayindependent integral evaluation. Automatica, 70(8), 153-157(2016) |