[1] CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21(4), 645-647(1970) [2] ALHARBI, S. M., BAZID, M. A., and EL GENDY, M. S. Heat and mass transfer in MHD viscoelastic fluid flow through a porous medium over a stretching sheet with chemical reaction. Applied Mathematics, 1(6), 446-455(2010) [3] HAYAT, T., QASIM, M., and ABBAS, Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet. Zeitschrift für Naturforschung A, 65(3), 231-239(2010) [4] HAYAT, T., SAIF, R. S., ELLAHI, R., MUHAMMAD, T., and AHMAD, B. Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Results in Physics, 7, 2601-2606(2017) [5] YASMIN, A., ALI, K., and ASHRAF, M. Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet. Scientific Reports, 10, 4581(2020) [6] WÖHLISCH, E. Adolf fick und die heutige physiologie. Naturwissenschaften, 26(36), 585-591(1938) [7] FOURIER, J. B. J. Théorie Analytique de la Chaleur, Didot, Paris (1822) [8] CATTANEO, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. della Universit di Modena, 3, 83-101(1948) [9] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36(4), 481-486(2009) [10] HAYAT, T., FAROOQ, M., ALSAEDI, A., and AL-SOLAMY, F. Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Advances, 5(8), 087159(2015) [11] KHAN, A. A., BATOOL, R., and KOUSAR, N. Examining the behavior of MHD micropolar fluid over curved stretching surface based on the modified Fourier law. Scientia Iranica, 28, 223-230(2021) [12] SUI, J., ZHENG, L., and ZHANG, X. Boundary layer heat and mass transfer with CattaneoChristov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461-468(2016) [13] MALIK, R., KHAN, M., SHAFIQ, A., MUSHTAQ, M., and HUSSAIN, M. An analysis of Cattaneo-Christov double-diffusion model for Sisko fluid flow with velocity slip. Results in Physics, 7, 1232-1237(2017) [14] HAYAT, T., QAYYUM, S., SHEHZAD, S. A., and ALSAEDI, A. Cattaneo-Christov doublediffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption. Results in Physics, 8, 489-495(2018) [15] SRINIVAS REDDY, C. and ALI, F. Cattaneo-Christov double diffusion theory for MHD cross nanofluid flow towards a vertical stretching sheet with activation energy. International Journal of Ambient Energy (2020) https://doi.org/10.1080/01430750.2020.1852113 [16] MUHAMMAD, T., RAFIQUE, K., ASMA, M., and ALGHAMDI, M. Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion. Physica A:Statistical Mechanics and Its Applications, 556, 123968(2020) [17] WANG, C. Y. Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid. Acta Mechanica, 72(3), 261-268(1988) [18] SIDDAPPA, B., ABEL, S., and HONGUNTI, V. Oscillatory motion of a viscoelastic fluid past a stretching sheet. Il Nuovo Cimento D, 17, 53-60(1995) [19] ALI, N., KHAN, S. U., and ABBAS, Z. Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Zeitschrift für Naturforschung A, 70(7), 567-576(2015) [20] KHAN, S. U. and SHEHZAD, S. A. Brownian movement and thermophoretic aspects in thirdgrade nanofluid over oscillatory moving sheet. Physica Scripta, 94(9), 095202(2019) [21] ABBAS, Z., IMRAN, M., and NAVEED, M. Time-dependent flow of thermally developed viscous fluid over an oscillatory stretchable curved surface. Alexandria Engineering Journal, 59(6), 4377-4390(2020) [22] IMRAN, M., ABBAS, Z., NAVEED, M., and SALAMAT, N. Impact of Joule heating and melting on time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall. Alexandria Engineering Journal, 60(4), 4097-4113(2021) [23] NAVEED, M., IMRAN, M., and ABBAS, Z. Curvilinear flow of micropolar fluid with CattaneoChristov heat flux model due to oscillation of curved stretchable sheet. Zeitschrift für Naturforschung A (2021) https://doi.org/10.1515/zna-2021-0006 [24] POWELL, R. E. and EYRING, H. Mechanisms for the relaxation theory of viscosity. nature, 154(3909), 427-428(1944) [25] DAWAR, A., SHAH, Z., IDREES, M., KHAN, W., ISLAM, S., and GUL, T. Impact of thermal radiation and heat source/sink on Eyring-Powell fluid flow over an unsteady oscillatory porous stretching surface. Mathematical and Computational Applications, 23(2), 20(2018) [26] ABBAS, Z., RAFIQ, M., and NAVEED, M. Analysis of Eyring-Powell liquid flow in curved channel with Cattaneo-Christov heat flux model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 390(2018) [27] ALHARBI, S. O., DAWAR, A., SHAH, Z., KHAN, W., IDREES, M., ISLAM, S., and KHAN, I. Entropy generation in MHD Eyring-Powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink. Applied Sciences, 8(12), 2588(2018) [28] KHAN, S. U., VAIDYA, H., CHAMMAM, W., MUSMAR, S. E. A., PRASAD, K. V., and TLILI, I. Triple diffusive unsteady flow of Eyring-Powell nanofluid over a periodically accelerated surface with variable thermal features. Frontiers in Physics, 8, 246(2020) [29] KHAN, S. U., SHEHZAD, S. A., RAUF, A., and ALI, N. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects. Results in Physics, 8, 1223-1231(2018) [30] NARLA, V. K., BISWAS, C., and RAO, G. A. Entropy analysis of MHD fluid flow over a curved stretching sheet. AIP Conference Proceedings, 2246, 020099(2020) [31] MEGAHED, A. M., GHONEIM, N. I., REDDY, M. G., and EL-KHATIB, M. Magnetohydrodynamic fluid flow due to an unsteady stretching sheet with thermal radiation, porous medium, and variable heat flux. Advances in Astronomy, 2021, 6686883(2021) [32] SHAFIQ, A., HAMMOUCH, Z., and SINDHU, T. N. Bioconvective MHD flow of tangent hyperbolic nanofluid with Newtonian heating. International Journal of Mechanical Sciences, 133, 759-766(2017) [33] SHAFIQ, A. and SINDHU, T. N. Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results in Physics, 7, 3059-3067(2017) [34] SHAFIQ, A., SINDHU, T. N., and HAMMOUCH, Z. Characteristics of homogeneous heterogeneous reaction on flow of Walters' B liquid under the statistical paradigm. Applied Analysis and Computation, Springer, Singapore, 295-311(2018) [35] SHAFIQ, A., HAMMOUCH, Z., and OZTOP, H. F. Radiative MHD flow of third-grade fluid towards a stretched cylinder. International Conference on Computational Mathematics and Engineering Sciences, Springer, Cham, 166-185(2019) [36] RASOOL, G., ZHANG, T., CHAMKHA, A. J., SHAFIQ, A., TLILI, I., and SHAHZADI, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22, 18(2020) [37] SHAFIQ, A., HAMMOUCH, Z., SINDHU, T. N., and BALEANU, D. Statistical approach of mixed convective flow of third-grade fluid towards an exponentially stretching surface with convective boundary condition. Special Functions and Analysis of Differential Equations, Chapman and Hall/CRC, Boca Raton, 307-319(2020) [38] SHAFIQ, A., SINDHU, T. N., and AL-MDALLAL, Q. M. A sensitivity study on carbon nanotubes significance in Darcy-Forchheimer flow towards a rotating disk by response surface methodology. Scientific Reports, 11, 8812(2021) |