[1] WATZEL, R., RUHLEMANN, C., and VINK, A. Mining mineral resources from the seabed:opportunities and challenges. Marine Policy, 114, 103828(2020) [2] HEIN, J. R., CONRAD, T. A., and STAUDIGEL, H. Seamount mineral deposits:a source of rare metals for high-technology industries. Oceanography, 23(1), 184-189(2010) [3] TORO, N., ROBLES, P., and JELDRES, R. I. Seabed mineral resources, an alternative for the future of renewable energy:a critical review. Ore Geology Reviews, 126, 103699(2020) [4] LIU, Y. X., LUO, G. L., and ZHUANG, Y. The status and forecast of China's exploitation of renewable marine energy resources. Journal of Coastal Research, 73, 193-196(2015) [5] PETERSEN, S., KRTSCHELL, A., AUGUSTIN, N., JAMIESON, J., HEIN, J. R., and HANNINGTON, M. D. News from the seabed-geological characteristics and resource potential of deepsea mineral resources. Marine Policy, 70, 175-187(2016) [6] WANG, S. L., BAI, F. L., HUANG, W. X., and SUN, Z. T. Current status and problems of exploration and development of world ocean metal mineral resources. Marine Geology & Quaternary Geology, 40(3), 160-170(2020) [7] MO, L. and LIU, S. Q. Cooperation with south pacific island countries to explore and develop deep-sea mineral resources (in Chinese). China Mining Magazine, 18(6), 43-45(2009) [8] LUSTY, P. A. J. and MURTON, B. J. Deep-ocean mineral deposits:metal resources and windows into earth processes. Elements, 14(25), 301-306(2018) [9] NAGENDER, N. B. and SHARMA, R. Environment and deep-sea mining:a perspective. Marine Georesources and Geotechnology, 18(3), 285-294(2000) [10] FENG, Y. L., LI, H. R., and ZHANG, W. M. Future trends of deep sea bed mining technology. Journal of Universuty of Science and Technology Beijing, 6(1), 4-7(1999) [11] LIU, S. J., LIU, C., and DAI, Y. Status and progress on researches and developments of deep ocean mining equipments (in Chinese). Journal of Mechanical Engineering, 50(2), 8-12(2014) [12] DAI, Y., LI, X. Y., YIN, W. W., HUANG, Z. H., and XIE, Y. Dynamics analysis of deep-sea mining pipeline system considering both internal and external flow. Marine Geotechnology, 39(4), 408-418(2021) [13] YANG, G. S., CHEN, D. D., LI, W. H., and LIU, X. Study on the overall design of deep-sea mining vessel based on pipeline hydraulic lifting mining system (in Chinese). Ship Engineering, 41(1), 23-27(2019) [14] DING, L. H. and GAO, Y. Q. Research and development of deep-sea mining collector (in Chinese). Mining Research and Development, A1, 52-56(2006) [15] WANG, Z. Q., LU, Y., and BAI, C. H. Numerical analysis of blast-induced liquefaction of soil. Computers and Geotechnics, 35(2), 196-209(2008) [16] HAKAM, A., YULIET, R., RISAYANTI, PUTRA, H. G., and SUNARYO. Foundation stability on sandy soil due to excessive pore water pressure:laboratory observations. IOP Conference Series:Earth and Environmental Science, 361(1), 012011(2019) [17] KUNGA, A., SVOBODOVA, K., LEBREA, E., VALENTA, R., KEMPA, D., and OWENA, J. R. Governing deep sea mining in the face of uncertainty. Journal of Environmental Management, 279, 111593(2020) [18] JONES, D. O. B., DURDEN, J. M., MURPHY, K., GJERDE, K. M., GEBICKA, A., COLOCO, A., MORATO, T., CUVELIER, D., and BILLETT, D. S. M. Existing environmental management approaches relevant to deep-sea mining. Marine Policy, 103, 172-181(2019) [19] SMITH, C. R., TUNNICLIFFE, V., COLAÇO, A., DRAZEN, J. C., GOLLNER, S., LEVIN, L. A., MESTRE, N. C., METAXAS, A., MOLODTSOVA, T. N., MORATO, T., SWEETMAN, A. K., WASHBURN, T., and AMON, D. J. Deep-sea misconceptions cause underestimation of seabed-mining impacts. Trends in Ecology & Evolution, 35(10), 853-857(2020) [20] WATANABE, H. K., SHIGENO, S., FUJIKURA, K., MATSUI, T., KATO, S., and YAMAMOTO, H. Faunal composition of deep-sea hydrothermal vent fields on the Izu-Bonin-Mariana Arc, north-western Pacific. Deep-Sea Research Part I, Oceanographic Research Papers, 149, 103050(2019) [21] ORCUTT, B. N., BRADLEY, J. A., BRAZELTON, W. J., ESTES, E. R., GOORDIAL, J. M., HUBER, J. A., JONES, R. M., MAHMOUDI, N., MARLOW, J. J., MURDOCK, S., and PACHIADAKI, M. Impacts of deep-sea mining on microbial ecosystem services. Limnology and Oceanography, 65(7), 1489-1510(2020) [22] BIOT, M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3), 240-253(1956) [23] LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299-309(1967) [24] GREEN, A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2(1), 1-7(1927) [25] GREEN, A. E. and NAGHDI, P. M. A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society:Mathematical and Physical Sciences, 432(1885), 171-194(1991) [26] GREEN, A. E. and NAGHDI, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15(2), 253-264(1992) [27] GREEN, A. E. and NAGHDI, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31(3), 189-208(1993) [28] GUO, Y., ZHU, H. B., XIONG, C. B., and YU, L. N. A two-dimensional generalized thermohydro-mechanical-coupled problem for a poroelastic half-space. Waves in Random and Complex Media, 30(4), 738-758(2020) [29] LIU, G. B., YAO, H. L., YANG, Y., and LU, Z. Coupling thermo-hydro-mechanical dynamic response of a porous elastic medium (in Chinese). Rock and Soil Mechanics, 28(9), 1784-1788(2007) [30] WANG, X. C., GE, Z. J., and WU, H. W. An algebraic multigrid method for coupled thermo-hydromechanical problems. Applied Mathematics and Mechanics (English Edition), 23(12), 1464-1471(2002) https://doi.org/10.1007/BF02438387 [31] LU, Z., YAO, H. L., LIU, G. B., and LUO, X. W. Research on characteristics of porous foundation subjected to moving loads based on generalized thermoelastic theory (in Chinese). Chinese Journal of Rock Mechanics and Engineering, 28(A2), 4014-4020(2009) [32] BAI, B. Fluctuation responses of saturated porous media subjected to cyclic thermal loading. Computers and Geotechnics, 33(8), 396-403(2006) [33] CHEN, W. Z., TAN, X. J., YU, H. D., WU, G. J., and JIA, X. P. A fully coupled thermo-hydromechanical model for unsaturated porous media. Journal of Rock Mechanics and Geotechnical Engineering, 1(1), 31-40(2009) [34] XIONG, C. B., GUO, Y., and DIAO, Y. Dynamic responses of saturated porous foundations under coupled thermo-hydro-mechanical effects (in Chinese). Applied Mathematics and Mechanics, 39(6), 689-699(2018) [35] XIONG, C. B., HU, J. J., and GUO, Y. Dynamic response of saturated porous elastic foundation under porosity anisotropy (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 52(4), 1120-1130(2020) [36] QIN, B., CHEN, Z. H., FANG, Z. D., SUN, S. G., FANG, X. W., and WANG, J. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I. Applied Mathematics and Mechanics (English Edition), 31(12), 1561-1576(2010) https://doi.org/10.1007/s10483-010-1384-6 [37] IESAN, D. A theory of thermoelastic materials with voids. Acta Mechanica, 60(1-2), 67-89(1986) [38] RILEY, J. P. and SKIRROW, G. Chemical Oceanography, Volume I, Academic Press, New York, 1-38(1998) [39] NI, J. Y., ZHOU, H. Y., PAN, J. M., ZHAO, H. Q., HU, C. Y., and WANG, F. G. Geochemical characteristics of sediments from the COMRA registered pioneer area (CRPA), equatorial northeastern Pacific Ocean. Acta Oceanologics Sinica, 20(4), 553-561(2001) [40] LIANG, E. J. Negative thermal expansion materials and their applications:a survey of recent patents. Recent Patents on Materials Science, 3(2), 106-128(2010) [41] WEI, S., KONG, X., WANG, H., MAO, Y., CHAO, M., GUO, J., and LIANG, E. Negative thermal expansion property of CuMoO4. Optik, 160, 61-67(2018) [42] KUMAR, R. and RANI, L. Deformation due to mechanical and thermal sources in generalized thermoelastic half-space with voids. Journal of Thermal Stresses, 28(2), 123-145(2005) |