[1] HARDIMAN, N. J. Elliptic elastic inclusion in an infinite elastic plate. Quarterly Journal of Mechanics and Applied Mathematics, 7(2), 226-230(1954) [2] SENDECKYJ, G. P. Elastic inclusion problems in plane elastostatics. International Journal of Solids and Structures, 6, 1535-1543(1970) [3] GONG, S. X. and MEGUID, S. A. On the elastic fields of an elliptical inhomogeneity under plane deformation. Proceedings of the Royal Society A, 443(1919), 457-471(1993) [4] GONG, S. X. and MEGUID, S. A. A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear. Journal of Applied Mechanics-Transactions of the ASME, 59, S131-S135(1992) [5] ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society A, 241(1226), 376-396(1957) [6] ESHELBY, J. D. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society A, 252(1271), 561-569(1959) [7] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323(1975) [8] GURTIN, M. E. and MURDOCH, A. I. Addenda to our paper A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 59(4), 389-390(1975) [9] GURTIN, M. E., WEISSMÜLLER, J., and LARCHE, F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78(5), 1093-1109(1998) [10] STEIGMANN, D. J. and OGDEN, R. W. Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A, 453(1959), 853-877(1997) [11] STEIGMANN, D. J. and OGDEN, R. W. Elastic surface-substrate interactions. Proceedings of the Royal Society A, 455(1982), 437-474(1999) [12] SHARMA, P., GANTI, S., and BHATE, N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82(4), 535-537(2003) [13] SHARMA, P. and GANTI, S. Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies. Journal of Applied Mechanics-Transactions of the ASME, 71(5), 663-671(2004) [14] LIM, C. W., LI, Z. R., and HE, L. H. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures, 43(17), 5055-5065(2006) [15] ZEMLYANOVA, A. Y. and MOGILEVSKAYA, S. G. On spherical inhomogeneity with SteigmannOgden interface. Journal of Applied Mechanics-Transactions of the ASME, 85(12), 121009(2018) [16] BAN, Y. and MI, C. Analytical solutions of a spherical nanoinhomogeneity under far-fileld unidirectional loading based on Steigmann-Ogden surface model. Mathematics and Mechanics of Solids, 25(10), 1904-1923(2020) [17] WANG, J., YAN, P., DONG, L., and ATLURI, S. N. Spherical nano-inhomogeneity with Steigmann-Ogden interface model under general uniform far-field stress. International Journal of Solids and Structures, 185, 311-323(2020) [18] FANG, Q. H. and LIU, Y. W. Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scripta Materialia, 55(1), 99-102(2006) [19] TIAN, L. and RAJAPAKSE, R. Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Journal of Applied Mechanics-Transactions of the ASME, 74(3), 568-574(2007) [20] MOGILEVSKAYA, S. G., CROUCH, S. L., and STOLARSKI, H. K. Multiple interacting circular nano-inhomogeneities with surface/interface efiects. Journal of the Mechanics and Physics of Solids, 56(6), 2298-2327(2008) [21] DAI, M., GHARAHI, A., and SCHIAVONE, P. Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Applied Mathematical Modelling, 55, 160-170(2018) [22] ZHANG, L. Mechanical effects of circular liquid inclusions inside soft matrix:role of internal pressure change and surface tension. Applied Mathematics and Mechanics (English Edition), 42(4), 501-510(2021) https://doi.org/10.1007/s10483-021-2722-8 [23] TIAN, L. and RAJAPAKSE, R. Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 44(24), 7988-8005(2007) [24] LUO, J. and WANG, X. On the anti-plane shear of an elliptic nano inhomogeneity. European Journal of Mechanics A/Solids, 28(5), 926-934(2009) [25] KUSHCH, V. I. Elastic fields and effective stifiness tensor of spheroidal particle composite with imperfect interface. Mechanics of Materials, 124, 45-54(2018) [26] KUSHCH, V. I., MOGILEVSKAYA, S. G., STOLARSKI, H. K., and CROUCH, S. L. Elastic interaction of spherical nanoinhomogeneities with Gurtin-Murdoch type interfaces. Journal of the Mechanics and Physics of Solids, 59(9), 1702-1716(2011) [27] WANG, X. and SCHIAVONE, P. Two circular inclusions with arbitrarily varied surface effects. Acta Mechanica, 226(5), 1471-1486(2015) [28] DAI, M., SCHIAVONE, P., and GAO, C. F. A new method for the evaluation of the effective properties of composites containing unidirectional periodic nanofibers. Archive of Applied Mechanics, 87(4), 647-665(2017) [29] WANG, X. and SCHIAVONE, P. Surface effects in the deformation of an anisotropic elastic material with nano-sized elliptical hole. Mechanics Research Communications, 52, 57-61(2013) [30] DUAN, H. L., WANG, J., HUANG, Z. P., and KARIHALOO, B. L. Eshelby formalism for nanoinhomogeneities. Proceedings of the Royal Society A, 461(2062), 3335-3353(2005) [31] DUAN, H. L., WANG, J., HUANG, Z. P., and KARIHALOO, B. L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53(7), 1574-1596(2005) [32] LEKHNITSKII, S. G. Anisotropic Plates, Gordon and Breach Science Publishers, New York (1968) [33] BENVENISTE, Y. and MILOH, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33(6), 309-323(2001) [34] BENVENISTE, Y. and MILOH, T. Soft neutral elastic inhomogeneities with membrane-type interface conditions. Journal of Elasticity, 88(2), 87-111(2007) [35] MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139-147(2000) [36] SHENOY, V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 71(9), 094104(2005) [37] RU, C. Q. Interface design of neutral elastic inclusions. International Journal of Solids and Structures, 35(7-8), 559-572(1998) [38] KUSHCH, V. I., SEVOSTIANOV, I., and MISHNAEVSKY, L. Stress concentration and effective stifiness of aligned fiber reinforced composite with anisotropic constituents. International Journal of Solids and Structures, 45(18-19), 5103-5117(2008) [39] MUSKHELISHVILI, N. I. Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen (1975) [40] FABER, G. Uber polynomische Entwickelungen. Mathematische Annalen, 57(3), 389-408(1903) |