[1] WANG, W., LI, P., JIN, F., and WANG, J. Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Composite Structures, 140, 758-775(2016) [2] ZHANG, Z. and JIANG, L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116, 134308(2014) [3] ZHENG, Y., HUANG, B., and WANG, J. Flexoelectric efiect on thickness-shear vibration of a rectangular piezoelectric crystal plate. Materials Research Express, 8, 115702(2021) [4] AMIR, S., BABAAKBAR-ZAREI, H., and KHORASANI, M. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mechanics Based Design of Structures and Machines, 48, 146-163(2019) [5] ANSARI, R., FARAJI-OSKOUIE, M., NESARHOSSEINI, S., and ROUHI, H. Flexoelectricity effect on the size-dependent bending of piezoelectric nanobeams resting on elastic foundation. Applied Physics A, 127, 518(2021) [6] CHEN, W., LIANG, X., and SHEN, S. Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green's functions. Acta Mechanica, 232, 449-460(2020) [7] ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859-880(2020) https://doi.org/10.1007/s10483-020-2620-8 [8] CHEN, W., WANG, L., and DAI, H. Stability and nonlinear vibration analysis of an axially loaded nanobeam based on nonlocal strain gradient theory. International Journal of Applied Mechanics, 11, 1950069(2019) [9] HASHEMI-KACHAPI, S. H., DARDEL, M., DANIALI, H. M., and FATHI, A. Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects. Thin-Walled Structures, 143, 106210(2019) [10] PRADHAN, N. and SARANGI, S. K. Nonlinear vibration analysis of smart functionally graded plates. Materials Today:Proceedings, 44, 1870-1876(2021) [11] XIANG, S., LEE, K. Y., and LI, X. F. Elasticity solution of functionally graded beams with consideration of the flexoelectric effect. Journal of Physics D:Applied Physics, 53, 105301(2020) [12] ROJAS, E. F., FAROUGHI, S., ABDELKEFI, A., and PARK, Y. H. Nonlinear size dependent modeling and performance analysis of flexoelectric energy harvesters. Microsystem Technologies, 25, 3899-3921(2019) [13] FANG, K., LI, P., and QIAN, Z. Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity. Acta Mechanica Solida Sinica, 34, 673-686(2021) [14] ZHAO, X., ZHENG, S., and LI, Z. Size-dependent nonlinear bending and vibration of flexoelectric nanobeam based on strain gradient theory. Smart Materials and Structures, 28, 075027(2019) [15] YUAN, J., ZHANG, X., and CHEN, C. Nonlinear vibration analysis of damaged microplate considering size effect. Shock and Vibration, 2020, 1-13(2020) [16] FAKHER, M. and HOSSEINI-HASHEMI, S. Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. Journal of Vibration and Control, 27, 378-391(2020) [17] ZAREPOUR, M., HOSSEINI, S. A. H., and AKBARZADEH, A. H. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model. Applied Mathematical Modelling, 69, 563-582(2019) [18] YANG, W., DENG, Q., LIANG, X., and SHEN, S. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures, 27, 085003(2018) [19] YANG, W., LIANG, X., DENG, Q., and SHEN, S. Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics, 103, 106105(2020) [20] ZHU, J., CHEN, S., CHEN, Y., CHEN, J., HU, P., WU, H., and ZHOU, Y. Thickness-twist waves in the nanoplates with flexoelectricity. Mechanics of Advanced Materials and Structures, 28, 2343-2350(2020) [21] CHEN, Y. and YAN, Z. Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. International Journal of Mechanical Sciences, 173, 105473(2020) [22] CHEN, Y., ZHANG, M., SU, Y., and ZHOU, Z. Coupling analysis of flexoelectric effect on functionally graded piezoelectric cantilever nanobeams. Micromachines, 12, 595(2021) [23] DAI, H. L., YAN, Z., and WANG, L. Nonlinear analysis of flexoelectric energy harvesters under force excitations. International Journal of Mechanics and Materials in Design, 16, 19-33(2019) [24] DENG, Q., LYU, S., LI, Z., TAN, K., LIANG, X., and SHEN, S. The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 128, 080902(2020) [25] SHI, J., FAN, C., ZHAO, M., and YANG, J. Variational analysis of thickness-shear vibrations of a quartz piezoelectric plate with two pairs of electrodes as an acoustic wave filter. International Journal of Applied Electromagnetics and Mechanics, 47, 951-961(2015) [26] SHI, J., FAN, C., ZHAO, M., and YANG, J. Thickness-shear vibration characteristics of an AT-cut quartz resonator with rectangular ring electrodes. International Journal of Applied Electromagnetics and Mechanics, 51, 1-10(2016) [27] ZHAO, Z., QIAN, Z., and WANG, B. Effects of unequal electrode pairs on an x-strip thicknessshear mode multi-channel quartz crystal microbalance. Ultrasonics, 72, 73-79(2016) [28] YUAN, L., WU, R., DU, J., WANG, J., and YANG, J. Thickness-shear and thickness-twist vibrations of rectangular quartz crystal plates with nonuniform thickness. Mechanics of Advanced Materials and Structures, 24, 937-942(2016) [29] WU, R., WANG, W., CHEN, G., DU, J., MA, T., and WANG, J. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations. Ultrasonics, 65, 338-344(2016) [30] WU, R., ZHANG, W., MA, T., DU, J., and WANG, J. Thickness-shear frequencies of an infinite quartz plate with graded material properties across the thickness. Acta Mechanica Solida Sinica, 33, 361-367(2020) [31] LI, P., JIN, F., and YANG, J. Thickness-shear vibration of an AT-cut quartz resonator with a hyperbolic contour. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 59, 1006-1012(2012) [32] LIU, B., XING, Y. F., EISENBERGER, M., and FERREIRA, A. J. M. Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method. Composite Structures, 107, 429-435(2014) [33] MA, T., WANG, J., DU, J., and YANG, J. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes. Ultrasonics, 59, 14-20(2015) [34] WU, R., WANG, J., DU, J., HUANG, D., and HU, Y. The non-linear thickness-shear vibrations of quartz crystal plates under an electric field. International Journal of Non-Linear Mechanics, 61, 32-38(2014) [35] SHEN, S. and HU, S. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58, 665-677(2010) [36] WU, R., WANG, J., DU, J., HUANG, D., WEI, Y., and HU, Y. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 59, 30-39(2012) [37] BASKARAN, S., HE, X., CHEN, Q., and FU, J. Y. Experimental studies on the direct flexoelectric efiect in α-phase polyvinylidene fluoride films. Applied Physics Letters, 98, 242901(2011) [38] SHEN, Z. and CHEN, W. Converse flexoelectric effect in comb electrode piezoelectric microbeam. Physics Letters A, 376, 1661-1663(2012) |