[1] DERLET, P. M., DUFRESNE, E. R., BORISOVA, E., HEYDERMAN, L. J., TESTA, P., STYLE, R. W., CUI, J. Z., and DONNELLY, C. Magnetically addressable shape-memory and stiffening in a composite elastomer. Advanced Materials, 31, 1900561(2019) [2] WAN, X., ZHANG, F. H., LIU, Y. J., and LENG, J. S. CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors. Carbon, 155, 77–87(2019) [3] LENDLEIN, A., JIANG, H., JÜNGER, O., and LANGER, R. Light-induced shape-memory polymers. nature, 434, 879–882(2005) [4] DU S. Y. and LU, H. B. A phenomenological thermodynamic model for the chemo-responsive shape memory effect in polymers based on Flory-Huggins solution theory. Polymer Chemistry, 5, 1155–1162(2014) [5] LU, H. B., LIU, Y. J., LENG, J. S., and DU, S. Y. Qualitative separation of the physical swelling effect on the recovery behavior of shape memory polymer. European Polymer Journal, 46, 1908– 1914(2010) [6] YANG, J. Y., ZHENG, Y. N., SHENG, L. J., CHEN, H. M., ZHAO, L. J., YU, W. H., ZHAO, K. Q., and HU, P. Water induced shape memory and healing effects by introducing carboxymethyl cellulose sodium into poly (vinyl alcohol). Industrial & Engineering Chemistry Research, 57, 15046–15053(2018) [7] BHARGAVA, A., PENG, K. Y., STIEG, J., MIRZAEIFAR, R., and SHAHAB, S. Focused ultrasound actuation of shape memory polymers: acoustic-thermoelastic modeling and testing. RSC Advances, 7, 45452–45469(2017) [8] CHEN, L., LI, W., LIU, X. P., ZHANG, C., ZHOU, H., and SONG, S. W. Carbon nanotubes array reinforced shape-memory epoxy with fast responses to low-power microwaves. Journal of Applied Polymer Science, 136, 47563(2019) [9] YENPECH, N., INTASANTA, V., and CHIRACHANCHAI, S. Laser-triggered shape memory based on thermoplastic and thermoset matrices with silver nanoparticles. Polymer, 182, 121792(2019) [10] YU, K., LIU, Y. J., and LENG, J. S. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances, 4, 2961–2968(2014) [11] LENDLEIN, A. and GOULD, O. E. Reprogrammable recovery and actuation behaviour of shapememory polymers. Nature Reviews Materials, 4, 116–133(2019) [12] LIU, Y. J., DU, H. Y., LIU, L. W., and LENG, J. S. Shape memory polymers and their composites in aerospace applications: a review. Smart Materials and Structures, 23, 023001(2014) [13] LENDLEIN, A., BEHL, M., HIEBL, B., and WISCHKE, C. Shape-memory polymers as a technology platform for biomedical applications. Expert Review of Medical Devices, 7, 357–379(2010) [14] HU, J. L., MENG, H., LI, G. Q., and IBEKWE, S. I. A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 21, 053001(2012) [15] PRETSCH, T., ECKER, M., SCHILDHAUER, M., and MASKOS, M. Switchable information carriers based on shape memory polymer. Journal of Materials Chemistry, 22, 7757–7766(2012) [16] ZHANG, J. F., YIN, Z. F., REN, L. Q., LIU, Q. P., REN, L., YANG, X., and ZHOU, X. L. Advances in 4D printed shape memory polymers: from 3D printing, smart excitation, and response to applications. Advanced Materials Technologies, 7, 2101568(2022) [17] SPIEGEL, C. A., HACKNER, M., BOTHE, V. P., SPATZ, J. P., and BLASCO, E. 4D printing of shape memory polymers: from macro to micro. Advanced Functional Materials (2022) https://doi.org/10.1002/adfm.202110580 [18] TAKASHIMA, K., ROSSITER, J., and MUKAI, T. McKibben artificial muscle using shapememory polymer. Sensors and Actuators A: Physical, 164, 116–124(2010) [19] SCHÖNFELD, D., CHALISSERY, D., WENZ, F., SPECHT, M., EBERL, C., and PRETSCH, T. Actuating shape memory polymer for thermoresponsive soft robotic gripper and programmable materials. Molecules, 26, 522(2021) [20] MELLY, S. K., LIU, L. W., LIU, Y. J., and LENG, J. S. Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. Journal of Materials Science, 55, 10975–11051(2020) [21] XUE, Y. H., LEI, J. C., and LIU, Z. S. A thermodynamic constitutive model for shape memory polymers based on phase transition. Polymer, 243, 124623(2022) [22] LIU, Y. P., GALL, K., DUNN, M. L., GREENBERG, A. R., and DIANI, J. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. International Journal of Plasticity, 22, 279–313(2006) [23] CHEN, Y. C. and LAGOUDAS, D. C. A constitutive theory for shape memory polymers, part I: large deformations. Journal of the Mechanics and Physics of Solids, 56, 1752–1765(2008) [24] BAGHANI, M., NAGHDABADI, R., ARGHAVANI, J., and SOHRABPOUR, S. A constitutive model for shape memory polymers with application to torsion of prismatic bars. Journal of Intelligent Material Systems and Structures, 23, 107–116(2012) [25] BAGHANI, M., NAGHDABADI, R., ARGHAVANI, J., and SOHRABPOUR, S. A thermodynamically-consistent 3D constitutive model for shape memory polymers. International Journal of Plasticity, 35, 13–30(2012) [26] TOBUSHI, H., HASHIMOTO, T., HAYASHI, S., and YAMADA, E. Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. Journal of Intelligent Material Systems and Structures, 8, 711–718(1997) [27] TOBUSHI, H., OKUMURA, K., HAYASHI, S., and ITO, N. Thermomechanical constitutive model of shape memory polymer. Mechanics of Materials, 33, 545–554(2001) [28] DIANI, J., LIU, Y., and GALL, K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polymer Engineering & Science, 46, 486–492(2006) [29] DIANI, J., GILORMINI, P., FRÉDY, C., and ROUSSEAU, I. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. International Journal of Solids and Structures, 49, 793–799(2012) [30] ARRIETA, S., DIANI, J., and GILORMINI, P. Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mechanics of Materials, 68, 95–103(2014) [31] PASINI, C., INVERARDI, N., BATTINI, D., SCALET, G., MARCONI, S., AURICCHIO, F., and PANDINI, S. Experimental investigation and modeling of the temperature memory effect in a 4D-printed auxetic structure. Smart Materials and Structures, 31, 095021(2022) [32] YARALI, E., BANIASSADI, M., and BAGHANI, M. Numerical homogenization of coiled carbon nanotube reinforced shape memory polymer nanocomposites. Smart Materials and Structures, 28, 035026(2019) [33] BHATTACHARYYA, A. and JAMES, K. A. Topology optimization of shape memory polymer structures with programmable morphology. Structural and Multidisciplinary Optimization, 63, 1863–1887(2021) [34] MAO, Y. Q., DING, Z., YUAN, C., AI, S. G., ISAKOV, M., WU, J. T., WANG, T. J., and DUNN, M. L. 3D printed reversible shape changing components with stimuli responsive materials. Scientific Reports, 6, 24761(2016) [35] YUAN, C., DING, Z., WANG, T. J., DUNN, M. L., and QI, H. J. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Materials and Structures, 26, 105027(2017) [36] ZUBAIR, Z., L’HOSTIS, G., and GODA, I. Electrical activation and shape recovery control of 3D multilayer woven shape memory polymer composite incorporating carbon fibers. Materials Letters, 291, 129511(2021) [37] GODA, I., ZUBAIR, Z., L’HOSTIS, G., and DREAN, J. Y. Design and characterization of 3D multilayer woven reinforcements shape memory polymer composites. Journal of Composite Materials, 55, 653–673(2021) [38] BAKHTIYARI, A., BANIASADI, M., and BAGHANI, M. Development of a large strain formulation for multiple shape-memory-effect of polymers under bending. International Journal of Mechanical Sciences, 204, 106560(2021) [39] ROCCABIANCA, S., GEI, M., and BIGONI, D. Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments. IMA Journal of Applied Mathematics, 75, 525–548(2010) [40] PASHAZADEH, J., AMIRI, A., TAHERI, A., and BAGHANI, M. A finite strain analytical solution for stress-softening of hyperelastic materials under cyclic bending. International Journal of Applied Mechanics, 13, 2150014(2021) [41] HOLZAPFEL, A. G. Nonlinear Solid Mechanics II, John Wiley & Sons, Inc., New York (2000) [42] HOLZAPFEL, G. A. On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. International Journal for Numerical Methods in Engineering, 39, 3903–3926(1996) [43] WILLIAMS, M. L., LANDEL, R. F., and FERRY, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707(1955) [44] DI MARZIO, E. A. and YANG, A. J. M. Configurational entropy approach to the kinetics of glasses. Journal of Research of the National Institute of Standards and Technology, 102, 135(1997) [45] BANIASADI, M., FOYOUZAT, A., and BAGHANI, M. Multiple shape memory effect for smart helical springs with variable stiffness over time and temperature. International Journal of Mechanical Sciences, 182, 105742(2020) [46] FAN, P. X., CHEN, W. J., ZHAO, B., HU, J. H., GAO, J. F., FANG, G. Q., and PENG, F. J. Formulation and numerical implementation of tensile shape memory process of shape memory polymers. Polymer, 148, 370–381(2018) [47] YARALI, E., NOROOZI, R., MOALLEMI, A., TAHERI, A., and BAGHANI, M. Developing an analytical solution for a thermally tunable soft actuator under finite bending. Mechanics Based Design of Structures and Machines, 50, 1793–1807(2020) |