Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (11): 1857-1874.doi: https://doi.org/10.1007/s10483-024-3187-6
• Articles • Next Articles
Jiajie GONG1, Xinyue LIU1,2, Yancong ZHANG1, Fengping ZHU3,*(), Guohui HU1,*(
)
Received:
2024-05-05
Online:
2024-11-03
Published:
2024-10-30
Contact:
Fengping ZHU, Guohui HU
E-mail:fpzhu@fudan.edu.cn;ghhu@staff.shu.edu.cn
Supported by:
2010 MSC Number:
Jiajie GONG, Xinyue LIU, Yancong ZHANG, Fengping ZHU, Guohui HU. Prediction of single cell mechanical properties in microchannels based on deep learning. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1857-1874.
Fig. 2
Procedure for characterizing deformed cell images through OpenCV. The binarization of the original 2D cell deformation image (a) obtained from the numerical calculations results in (b). Subsequently, the cell contour is extracted, and its centroid is computed, yielding (c). Shifting the centroid to the origin and starting from Point "A" (d), the contour points are systematically selected in a counterclockwise manner with an angular interval. All these contour points are connected to the origin, forming a vector. (e) The xi and yi coordinates of the contour points are connected in a serpentine fashion, serving as the input of the NN (color online)"
Fig. 3
Architecture of the MI-CNN model. The input of the MI-CNN model is the contour data obtained by processing the deformation images of cells at time steps obtained in the finite element simulation shown in Fig. 2 (Input 1). This model includes a series of 2D convolutional layers for feature extraction and a max-pooling layer. Then, a flat layer is used to place all extracted features into a single-column feature vector. Combined with time and position information, it forms the input for a fully connected layer (Input 2). According to different settings of the loss function, it can be used to predict the elastic modulus E of cells (regression problem) and the type of constitutive equation (classification problem) (color online)"
Fig. 4
Prediction of the MI-CNN model on E when ns=21: (a) training and validation loss history plot after 50 000 training steps and (b) R2 plot assessing the model's fitting performance to the dataset. The horizontal axis represents the E used in numerical simulations, while the vertical axis represents the NN-predicted E. Points closer to the dashed line indicate better performance. Red, blue, and green dots correspond to training, validation, and test data, with average R2 of 0.999 4, 0.999 4, and 0.999 6, respectively (color online)"
Fig. 6
(a) Three-class classification results of the MI-CNN model (ns=16) for the K-V, N-H, and M-R constitutive models with c2/c1=0.1. (b) Comparison of cell deformations obtained using the M-R and N-H constitutive equations at an elastic modulus of E=2 kPa in the microchannel at T=11 ms (color online)"
1 | EL-ALI,J.,SORGER,P. K., andJENSEN,K. F.Cells on chips.nature,442(7101),403-411(2006) |
2 | FRITSCH,A.,HÖCKEL,M.,KIESSLING,T.,NNETU,K. D.,WETZEL,F.,ZINK,M., andKÄS,J. A.Are biomechanical changes necessary for tumour progression?.Nature Physics,6(10),730-732(2010) |
3 | BYUN,S.,SON,S.,AMODEI,D.,CERMAK,N.,SHAW,J.,KANG,J. H., andMANALIS,S. R.Characterizing deformability and surface friction of cancer cells.Proceedings of the National Academy of Sciences,110(19),7580-7585(2013) |
4 | ISERMANN,P., andLAMMERDING,J.Nuclear mechanics and mechanotransduction in health and disease.Current Biology,23(24),R1113-R1121(2013) |
5 | DI CARLO,D.A mechanical biomarker of cell state in medicine.Journal of Laboratory Automation,17(1),32-42(2012) |
6 | GUZNICZAK,E.,MOHAMMAD-ZADEH,M.,DEMPSEY,F.,JIMENEZ,M.,BOCK,H.,WHYTE,G., andBRIDLE,H.High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing.Scientific Reports,7(1),14457(2017) |
7 | GUCK,J., andCHILVERS,E. R.Mechanics meets medicine.Science Translational Medicine,5(212),212fs41(2013) |
8 | TREPAT,X.,DENG,L.,AN,S. S.,NAVAJAS,D.,TSCHUMPERLIN,D. J.,GERTHOFFER,W. T., andFREDBERG,J. J.Universal physical responses to stretch in the living cell.nature,447(7144),592-595(2007) |
9 | DENG,L.,TREPAT,X.,BUTLER,J. P.,MILLET,E.,MORGAN,K. G.,WEITZ,D. A., andFREDBERG,J. J.Fast and slow dynamics of the cytoskeleton.Nature Materials,5(8),636-640(2006) |
10 | EKPENYONG,A. E.,WHYTE,G.,CHALUT,K.,PAGLIARA,S.,LAUTENSCHLÄGER,F.,FIDDLER,C., andGUCK,J.Viscoelastic properties of differentiating blood cells are fate-and function-dependent.PLoS ONE,7(9),e45237(2012) |
11 | LAUTENSCHLÄGER,F.,PASCHKE,S.,SCHINKINGER,S.,BRUEL,A.,BEIL,M., andGUCK,J.The regulatory role of cell mechanics for migration of differentiating myeloid cells.Proceedings of the National Academy of Sciences,106(37),15696-15701(2009) |
12 | TSE,H. T.,GOSSETT,D. R.,MOON,Y. S.,MASAELI,M.,SOHSMAN,M.,YING,Y., andDI CARLO,D.Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping.Science Translational Medicine,5(212),212ra163(2013) |
13 | SHAREI,A.,ZOLDAN,J.,ADAMO,A.,SIM,W. Y.,CHO,N.,JACKSON,E., andJENSEN,K. F.A vector-free microfluidic platform for intracellular delivery.Proceedings of the National Academy of Sciences,110(6),2082-2087(2013) |
14 | LEE,J.,SHAREI,A.,SIM,W. Y.,ADAMO,A.,LANGER,R.,JENSEN,K. F., andBAWENDI,M. G.Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device.Nano Letters,12(12),6322-6327(2012) |
15 | CHAI,J., andSONG,Q.Multiple-protein detections of single-cells reveal cell-cell heterogeneity in human cells.IEEE Transactions on Biomedical Engineering,62(1),30-38(2014) |
16 | UNAL,M.,ALAPAN,Y.,JIA,H.,VARGA,A. G.,ANGELINO,K.,ASLAN,M., andGURKAN,U. A.Micro and nano-scale technologies for cell mechanics.Nanobiomedicine,1,1-5(2014) |
17 | HAO,Y.,CHENG,S.,TANAKA,Y.,HOSOKAWA,Y.,YALIKUN,Y., andLI,M.Mechanical properties of single cells: measurement methods and applications.Biotechnology Advances,45,107648(2020) |
18 | WU,P. H.,AROUSH,D. R. B.,ASNACIOS,A.,CHEN,W. C.,DOKUKIN,M. E.,DOSS,B. L., andWIRTZ,D.A comparison of methods to assess cell mechanical properties.Nature Methods,15,491-498(2018) |
19 | BENTO,D.,RODRIGUES,R. O.,FAUSTINO,V.,PINHO,D.,FERNANDES,C. S.,PEREIRA,A. I., andLIMA,R.Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements.Micromachines,9(4),151(2018) |
20 | TOEPFNER,N.,HEROLD,C.,OTTO,O.,ROSENDAHL,P.,JACOBI,A.,KRÄTER,M.,STÄCHELE,J.,MENSCHNER,L.,HERBIG,M.,CIUFFREDA,L.,FORD-CARTWRIGHT,L.,GRZYBEK,M.,COSKUN,Ü.,REITHUBER,E.,GARRISS,G.,MELLROTH,P.,HENRIQUES-NORMARK,B.,TREGAY,N.,SUTTORP,M.,BORNHÄUSER,M.,CHILVERS,E. R.,BERNER,R., andGUCK,J.Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.eLife,7,e29213(2018) |
21 | XIE,J., andHU,G. H.Computational modelling of membrane gating in capsule translocation through microchannel with variable section.Microfluidics and Nanofluidics,25(2),17(2021) |
22 | ABKARIAN,M.,FAIVRE,M., andSTONE,H. A.High-speed microfluidic differential manometer for cellular-scale hydrodynamics.Proceedings of the National Academy of Sciences,103(3),538-542(2006) |
23 | BOW,H.,PIVKIN,I. V.,DIEZ-SILVA,M.,GOLDFLESS,S. J.,DAO,M.,NILES,J. C., andHAN,J.A microfabricated deformability-based flow cytometer with application to malaria.Lab on a Chip,11(6),1065-1073(2011) |
24 | GOSSETT,D. R.,TSE,H. T.,LEE,S. A.,YING,Y.,LINDGREN,A. G.,YANG,O. O., andDICARLO,D.Hydrodynamic stretching of single cells for large population mechanical phenotyping.Proceedings of the National Academy of Sciences,109(20),7630-7635(2012) |
25 | AI,J. F.,XIE,J., andHU,G. H.Numerical simulation of red blood cells deformation in microchannel under zero-net-mass-flux jet.Acta Physica Sinica,69(23),234701(2020) |
26 |
LIU,X. Y.,AI,J. F.,XIE,J., andHU,G. H.Numerical study of opposed zero-net-mass-flow jet-induced erythrocyte mechanoporation.Applied Mathematics and Mechanics (English Edition),43(11),1763-1776(2022)
doi: 10.1007/s10483-022-2931-6 |
27 | MACQUEEN,L. A.,BUSCHMANN,M. D., andWERTHEIMER,M. R.Mechanical properties of mammalian cells in suspension measured by electro-deformation.Journal of Micromechanics and Microengineering,20(6),065007(2010) |
28 | BEECH,J. P.,HOLM,S. H.,ADOLFSSON,K., andTEGENFELDT,J. O.Sorting cells by size, shape and deformability.Lab on a Chip,12(6),1048-1051(2012) |
29 | OTTO,O.,ROSENDAHL,P.,MIETKE,A.,GOLFIERS,S.,HEROLD,C.,KLAUE,D., andGUCK,J.Real-time deformability cytometry: on-the-fly cell mechanical phenotyping.Nature Methods,12(3),199-202(2015) |
30 | ROSENDAHL,P.,PLAK,K.,JACOBI,A.,KRAETER,M.,TOEPFNER,N.,OTTO,O., andGUCK,J.Real-time fluorescence and deformability cytometry.Nature Methods,15(5),355-358(2018) |
31 | MIETKE,A.,OTTO,O.,GIRARDO,S.,ROSENDAHL,P.,TAUBENBERGER,A.,GOLFIERS,S., andFISCHER-FRIEDRICH,E.Extracting cell stiffness from real-time deformability cytometry: theory and experiment.Biophysical Journal,109(10),2023-2036(2015) |
32 | MOKBEL,M.,MOKBEL,D.,MIETKE,A.,TRABER,N.,GIRARDO,S.,OTTO,O., andALAND,S.Numerical simulation of real-time deformability cytometry to extract cell mechanical properties.ACS Biomaterials Science and Engineering,3(11),2962-2973(2017) |
33 | SARKER,I. H.Machine learning: algorithms, real-world applications and research directions.SN Computer Science,2(3),160(2021) |
34 | PRALJAK,N.,IRAM,S.,GOREKE,U.,SINGH,G.,HILL,A.,GURKAN,U. A., andHINCZEWSKI,M.Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin.PLoS Computational Biology,17(11),e1008946(2021) |
35 | HEIDARI,M.,LAKSHMIVARAHAN,S.,MIRNIAHARIKANDEHEI,S.,DANALA,G.,MARYADA,S. K. R.,LIU,H., andZHENG,B.Applying a random projection algorithm to optimize machine learning model for breast lesion classification.IEEE Transactions on Biomedical Engineering,68(9),2764-2775(2021) |
36 | TIAN,Y.,LIN,W.,QU,K.,WANG,Z., andZHU,X.Insights into cell classification based on combination of multiple cellular mechanical phenotypes by using machine learning algorithm.Journal of the Mechanical Behavior of Biomedical Materials,128,105097(2022) |
37 | PHILLIP,J. M.,HAN,K. S.,CHEN,W. C.,WIRTZ,D., andWU,P. H.A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei.Nature Protocols,16(2),754-774(2021) |
38 | SONG,T. H.,SANCHEZ,V.,EIDALY,H., andRAJPOOT,N. M.Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images.IEEE Transactions on Biomedical Engineering,64(12),2913-2923(2017) |
39 | HERBIG,M.,JACOBI,A.,WOBUS,M.,WEIDNER,H.,MIES,A.,KRÄTER,M.,OTTO,O.,THIEDE,C.,WEICKERT,M.,GÖTZE,K. S.,RAUNER,M.,HOFBAUER,L. C.,BORNHÄUSER,M.,GUCK,J.,ADER,M.,PLATZBECKER,U., andBALAIAN,E.Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes.Scientific Reports,12(1),870(2022) |
40 | ISLAM,S.,SHAH,V.,GIDDE,S. T. R.,HUTAPEA,P.,SONG,S. H.,PICONE,J., andKIM,A.A machine learning enabled wireless intracranial brain deformation sensing system.IEEE Transactions on Biomedical Engineering,67(12),3521-3530(2020) |
41 | LEE,S.,LUKAN,J.,BOYKO,T.,ZELENOVA,K.,MAKLED,B.,PARSEY,C., andDE,S.A deep learning model for burn depth classification using ultrasound imaging.Journal of the Mechanical Behavior of Biomedical Materials,125,104930(2022) |
42 | SHEN,S. C. Y.,FERNÁNDEZ,M. P.,TOZZI,G., andBUEHLER,M. J.Deep learning approach to assess damage mechanics of bone tissue.Journal of the Mechanical Behavior of Biomedical Materials,123,104761(2021) |
43 | KARNIADAKIS,G. E.,KEVREKIDIS,I. G.,LU,L.,PERDIKARIS,P.,WANG,S., andYANG,L.Physics-informed machine learning.Nature Reviews Physics,3(6),422-440(2021) |
44 | LIN,T.,WANG,Z.,LU,R.,WANG,W., andSUI,Y.Characterising mechanical properties of flowing microcapsules using a deep convolutional neural network.Advances in Applied Mathematics and Mechanics,14(1),79-100(2022) |
45 | LIN,T.,WANG,Z.,WANG,W., andSUI,Y.A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules.Soft Matter,17(15),4027-4039(2021) |
46 | GUO,Z.,LIN,T.,JING,D.,WANG,W., andSUI,Y.A method for real-time mechanical characterisation of microcapsules.Biomechanics and Modeling in Mechanobiology,22(4),1209-1220(2023) |
47 | NGUYEN,D.,TAO,L.,YE,H., andLI,Y.Machine learning-based prediction for single-cell mechanics.Mechanics of Materials,180,104631(2023) |
48 | LIANG,L.,LIU,M., andSUN,W.A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.Acta Biomaterialia,63,227-235(2017) |
49 | MARTÍNEZ-MARTÍNEZ,F.,RUPÉREZ-MORENO,M. J.,MARTíNEZ-SOBER,M.,SOLVES-LLORENS,J. A.,LORENTE,D.,SERRANO-LÓPEZ,A. J.,MARTÍNEZ-SANCHIS,S.,MONSERRAT,C., andMARTÍN-GUERRERO,J. D.A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.Computers in Biology and Medicine,90,116-124(2017) |
50 | XIAO,P.,HAQUE,E.,ZHANG,T.,DONG,X. N.,HUANG,Y., andWANG,X.Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone?.Journal of the Mechanical Behavior of Biomedical Materials,124,104834(2021) |
51 | WANG, Z., LUO, W., GAO, L., and LI, M. Modeling the bottom-up filling of through silicon vias with different additives. 15th International Conference on Electronic Packaging Technology, IEEE, Chengdu (2014) |
52 | YANEN, W., SHENGMIN, W., YAN, X. T., YAO, C., and MING, Y. Computer simulation for bone scaffolds on account of fluid-solid coupling model. 2009 International Forum on Computer Science-Technology and Applications, IEEE, Chongqing (2009) |
53 | LIU,X.,GUI,N.,WU,H.,YANG,X.,TU,J., andJIANG,S.Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction.Experimental and Computational Multiphase Flow,2,151-161(2020) |
54 | KALLIONTZIS,D.Fluid-structure interaction with ALE formulation and skeleton-based structural models.Journal of Fluids and Structures,110,103513(2022) |
55 | FOURNIER,J. B., andBARBETTA,C.Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes.Physical Review Letters,100(7),078103(2008) |
56 | PENROSE,J. M. T., andSTAPLES,C. J.Implicit fluid-structure coupling for simulation of cardiovascular problems.International Journal for Numerical Methods in Fluids,40(3-4),467-478(2002) |
57 | WEI,X.,SANG,J.,TIAN,C.,SUN,L., andLIU,B.Different types of constitutive parameters red blood cell membrane based on machine learning and FEM.International Journal of Computational Methods,20(3),2250057(2023) |
58 | HAN,Y.,LIN,H.,DING,M.,LI,R., andSHI,T.Flow-induced translocation of vesicles through a narrow pore.Soft Matter,15(16),3307-3314(2019) |
59 | POZRIKIDIS,C.Modeling and Simulation of Capsules and Biological Cells,Chapman and Hall/CRC,New York(2003) |
60 | SKALAK,R.,TOZEREN,A.,ZARDA,R. P., andCHIEN,S.Strain energy function of red blood cell membranes.Biophysical Journal,13(3),245-264(1973) |
61 | BERGSTROM,J. S.Mechanics of Solid Polymers: Theory and Computational Modeling,William Andrew,New York(2015) |
62 | HOWELL,P.,KOZYREFF,G., andOCKENDON,J.Applied Solid Mechanics,Cambridge University Press,Cambridge(2009) |
63 | GREEN,A. E., andADKINS,J. E.Large Elastic Deformations,Oxford University Press,Oxford(1970) |
64 | KUZNETSOVA,T. G.,STARODUBTSEVA,M. N.,YEGORENKOV,N. I.,CHIZHIK,S. A., andZHDANOV,R. I.Atomic force microscopy probing of cell elasticity.Micron,38(8),824-833(2007) |
65 | SUZUKI,S.Topological structural analysis of digitized binary images by border following.Computer Vision, Graphics, and Image Processing,30(1),32-46(1985) |
66 | DIETTERICH, T. G. Ensemble methods in machine learning. International Workshop on Multiple Classifier Systems, Springer, Heidelberg, 1–15 (2000) |
[1] | J. N. FUHG, A. KARMARKAR, T. KADEETHUM, H. YOON, N. BOUKLAS. Deep convolutional Ritz method: parametric PDE surrogates without labeled data [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1151-1174. |
[2] | M. KIM, G. LIN. Peri-Net-Pro: the neural processes with quantified uncertainty for crack patterns [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1085-1100. |
[3] | Chuansai ZHOU, Haochen LI, Chen YU, Jiangjiang XIA, Pingwen ZHANG. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 155-166. |
[4] | H. JIN. Compressible closure models for turbulent multifluid mixing [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(1): 97-106. |
[5] | Guo Xingming. THE EXISTENCE OF SOLUTIONS IN NONLINEAR ELASTODYNAMICS [J]. Applied Mathematics and Mechanics (English Edition), 1997, 18(3): 243-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||