Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (10): 1829-1850.doi: https://doi.org/10.1007/s10483-025-3306-9
Dali WANG1,2, Tianli JIANG3,†(
), Huliang DAI1,2, Lin WANG1,2
Received:2025-07-02
Revised:2025-08-21
Published:2025-09-30
Contact:
Tianli JIANG, E-mail: jiangtianli@whut.edu.cnSupported by:2010 MSC Number:
Dali WANG, Tianli JIANG, Huliang DAI, Lin WANG. Non-planar vibration characteristics and buckling behaviors of two fluid-conveying pipes coupled with an intermediate spring. Applied Mathematics and Mechanics (English Edition), 2025, 46(10): 1829-1850.
Table 1
The first six coupled frequencies of the pipe system in the y- and z-directions with zero flow velocity at Ls=0.75L"
| Mode number | Coupled frequency in the | Coupled frequency in the |
|---|---|---|
| 1 | 9.869 6 | 9.869 6 |
| 2 | 18.333 8 | 13.135 8 |
| 3 | 39.478 4 | 39.478 4 |
| 4 | 49.740 5 | 41.662 0 |
| 5 | 88.826 4 | 88.826 4 |
| 6 | 91.588 1 | 89.323 3 |
| [1] | TANG, Y., ZHANG, H. J., CHEN, L. Q., DING, Q., GAO, Q. Y., and YANG, T. Z. Recent progress on dynamics and control of pipes conveying fluid. Nonlinear Dynamics, 113(7), 6253–6315 (2025) |
| [2] | CHEN, W., CAO, R., HU, J., DAI, H., and WANG, L. Research advances in large-deformation dynamics of slender fluid-conveying pipelines (in Chinese). Advances in Mechanics, 55(1), 113–174 (2025) |
| [3] | YAN, H., XIONG, F., JIANG, N., DAI, H. L., WANG, L., HUANG, Q., and NI, Q. Nonlinear vibration control of a simply-supported fluid-conveying pipe with nonlinear energy sink (in Chinese). Chinese Journal of Solid Mechanics, 40(2), 127–136 (2019) |
| [4] | PAÏDOUSSIS, M. P. and LI, G. X. Pipes conveying fluid: a model dynamical problem. Journal of Fluids and Structures, 7(2), 137–204 (1993) |
| [5] | BOURRIÈRES, F. and BÉNARD, H. Sur un Phénomène d’oscillation Auto-entretenue en Mécanique des Fluides réels, Blondel la Rougery, Gauthier-Villars (1939) |
| [6] | HOUSNER, G. W. Bending vibrations of a pipe line containing flowing fluid. Journal of Applied Mechanics, 19(2), 205–208 (1952) |
| [7] | NIORDSON, F. I. Vibrations of a Cylindrical Tube Containing Flowing Fluid, Elanders Boktr, Göteborg (1953) |
| [8] | FEODOS’EV, V. P. Vibrations and stability of a pipe when liquid flows through it. Inzhenernyi Sbornik, 1951(10), 169–170 (1951) |
| [9] | GREGORY, R. W. and PAÏDOUSSIS, M. P. Unstable oscillation of tubular cantilevers conveying fluid, I: theory. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 293(1435), 512–527 (1966) |
| [10] | HOLMES, P. J. Pipes supported at both ends cannot flutter. Journal of Applied Mechanics, 45(3), 619–622 (1978) |
| [11] | CH’NG, E. and DOWELL, E. H. A Theoretical Analysis of Nonlinear Effects on the Flutter and Divergence of a Tube Conveying Fluid, AMS Report, Princeton University (1977) |
| [12] | LUNDGREN, T. S., SETHNA, P. R., and BAJAJ, A. K. Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. Journal of Sound and Vibration, 64(4), 553–571 (1979) |
| [13] | SEMLER, C., LI, G. X., and PAÏDOUSSIS, M. P. The non-linear equations of motion of pipes conveying fluid. Journal of Sound and Vibration, 169(5), 577–599 (1994) |
| [14] | MACIEL, V. S. F., KHEIRI, M., and FRANZINI, G. R. Passive suppression of flow-induced vibrations of a cantilevered pipe discharging fluid using non-linear vibration absorbers. International Journal of Non-Linear Mechanics, 144, 104053 (2022) |
| [15] | WANG, Y. K., LV, J. H., YANG, M., ZHANG, Y., QIN, T., and WANG, L. Stability analysis of an articulated flexible pipe conveying fluid with a rotational spring. Journal of Fluids and Structures, 133, 104277 (2025) |
| [16] | JAYAN, M. M. S., WANG, L. F., SELVAMANI, R., and RAMYA, N. Analysis of vibrational properties of horn-shaped magneto-elastic single-walled carbon nanotube mass sensor conveying pulsating viscous fluid using Haar wavelet technique. Acta Mechanica Solida Sinica, 37(5), 685–699 (2024) |
| [17] | TANG, Y., WANG, G., and DING, Q. Nonlinear fractional-order dynamic stability of fluid-conveying pipes constituted by the viscoelastic materials with time-dependent velocity. Acta Mechanica Solida Sinica, 35(5), 733–745 (2022) |
| [18] | CHEN, Y., YANG, X. D., and LIANG, F. Nonlocal thermal-mechanical vibration of spinning functionally graded nanotubes conveying fluid based on the Timoshenko model. Acta Mechanica Solida Sinica (2025) https://doi.org/10.1007/s10338-024-00574-5 |
| [19] | HHAN, D. H., JIA, Q., GAO, Y. Y., JIN, Q. D., FANG, X., WEN, J. H., and YU, D. L. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes. Applied Mathematics and Mechanics (English Edition), 45(10), 1821–1840 (2024) https://doi.org/10.1007/s10483-024-3166-8 |
| [20] | JING, J., MAO, X. Y., DING, H., LI, H. G., and CHEN, L. Q. Modeling and mechanism of vibration reduction of pipes by visco-hyperelastic materials. Applied Mathematics and Mechanics (English Edition), 46(6), 1029–1048 (2025) https://doi.org/10.1007/s10483-025-3263-6 |
| [21] | YU, T. C., LIANG, F., and YANG, H. L. Vibration energy harvesting of a three-directional functionally graded pipe conveying fluids. Applied Mathematics and Mechanics (English Edition), 46(5), 795–812 (2025) https://doi.org/10.1007/s10483-025-3249-8 |
| [22] | HAO, M. Y., DING, H., MAO, X. Y., and CHEN, L. Q. Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mechanica Solida Sinica, 36(2), 230–240 (2023) |
| [23] | WU, Y. F., CHEN, E. W., RUAN, Z. W., ZHANG, P. P., CHEN, P., and LU, Y. M. Nonlinear vibration analysis of a fluid-conveying pipe under harmonic excitation with elastic boundary constraints. International Journal of Non-Linear Mechanics, 170, 104981 (2025) |
| [24] | CHEN, W. J., QU, X. C., ZHANG, R. X., GUO, X. M., MA, H., and WEN, B. C. Nonlinear stress analysis of aero-engine pipeline based on semi-analytical method. Applied Mathematics and Mechanics (English Edition), 46(3), 521–538 (2025) https://doi.org/10.1007/s10483-025-3225-8 |
| [25] | WEI, S., YAN, X., FAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of fluid-conveying pipe with nonlinear supports at both ends. Applied Mathematics and Mechanics (English Edition), 43(6), 845–862 (2022) https://doi.org/10.1007/s10483-022-2857-6 |
| [26] | ALVIS, T., SAUNDERS, B. E., and ABDELKEFI, A. Dynamical responses of constrained pipe conveying fluids and its dependence on the modeling of the contact force. International Journal of Non-Linear Mechanics, 150, 104364 (2023) |
| [27] | FAN, C. Z., GUO, C. Q., XU, F., and WANG, T. L. Research on impact vibration response of hinged fluid-conveying pipe with bilateral gap constraints. International Journal of Non-Linear Mechanics, 162, 104726 (2024) |
| [28] | GHOLAMI, M. and EFTEKHARI, M. Nonlinear forced vibration in a subcritical regime of a porous functionally graded pipe conveying fluid with a retaining clip. Applied Mathematics and Mechanics (English Edition), 46(1), 101–122 (2025) https://doi.org/10.1007/s10483-025-3206-9 |
| [29] | LI, H. F., SUN, Y. B., WEI, S., DING, H., and CHEN, L. Q. Random vibration of a pipe conveying fluid under combined harmonic and Gaussian white noise excitations. Acta Mechanica Solida Sinica (2025) https://doi.org/10.1007/s10338-025-00586-9 |
| [30] | LI, M. W. and WANG, L. Parametric model reduction for a cantilevered pipe conveying fluid via parameter-dependent center and unstable manifolds. International Journal of Non-Linear Mechanics, 160, 104629 (2024) |
| [31] | LOUISE, E. R. Vibration and stability of vertical tubes conveying fluid subjected to planar excitation, Ph. D. dissertation, University of Wisconsin-Madison (1988) |
| [32] | NI, Q., ZHANG, Z. L., WANG, L., QIAN, Q., and TANG, M. Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. Acta Mechanica Solida Sinica, 27(2), 162–171 (2014) |
| [33] | LÜ, L., HU, Y. J., WANG, X. L., LING, L., and LI, C. G. Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes. Nonlinear Dynamics, 79(4), 2715–2734 (2015) |
| [34] | GAO, P. X., YU, T., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chinese Journal of Aeronautics, 34(4), 83–114 (2021) |
| [35] | JIANG, T. L., ZHANG, L. B., GUO, Z. L., YAN, H., DAI, H. L., and WANG, L. Three-dimensional dynamics and synchronization of two coupled fluid-conveying pipes with intermediate springs. Communications in Nonlinear Science and Numerical Simulation, 115, 106777 (2022) |
| [36] | PAÏDOUSSIS, M. P. Fluid-Structure Interactions: Slender Structures and Axial Flow, Academic Press, London (1998) |
| [37] | HOLMES, P. J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. Journal of Sound and Vibration, 53(4), 471–503 (1977) |
| [38] | WADHAM-GAGNON, M., PAÏDOUSSIS, M. P., and SEMLER, C. Dynamics of cantilevered pipes conveying fluid, part 1: nonlinear equations of three-dimensional motion. Journal of Fluids and Structures, 23(4), 545–567 (2007) |
| [1] | Tianli JIANG, Huliang DAI, Kun ZHOU, Lin WANG. Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(1): 15-32. |
| [2] | Weng Zongyi. AN ANALYSIS OF THE POST-BUCKLING OF LAMINATEDPLATES OF SYMMETRIC CROSS-PLY [J]. Applied Mathematics and Mechanics (English Edition), 1995, 16(12): 1221-1230. |
| [3] | Cheng Chang-jun;Ning Jian-guo . ELASTIC INSTABILITY OF AN ORTHOTROPIC ELLIPTIC PLATE [J]. Applied Mathematics and Mechanics (English Edition), 1991, 12(4): 355-362. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS