Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (9): 1631-1648.doi: https://doi.org/10.1007/s10483-025-3297-8
Ti CHEN, Songyuan HE, Yankai WANG, Zhengtao WEI†(
), Yingjie CHEN, J. TAYEBI
Received:2025-06-25
Revised:2025-07-31
Published:2025-09-12
Contact:
Zhengtao WEI, E-mail: weizhengtao@nuaa.edu.cnSupported by:2010 MSC Number:
Ti CHEN, Songyuan HE, Yankai WANG, Zhengtao WEI, Yingjie CHEN, J. TAYEBI. Dynamics and control for capture mode of drag-free satellite considering nonlinear electrostatic effect. Applied Mathematics and Mechanics (English Edition), 2025, 46(9): 1631-1648.
| [14] | DENG, J. F., CAI, Z. M., CHEN, K., SHI, X. J., YU, J. P., and LI, H. W. Drag-free control and its application in China's space gravitational wave detection. Chinese Optics, 12(3), 503–514 (2019) |
| [15] | ARMANO, M., AUDLEY, H., BAIRD, J., BINETRUY, P., BORN, M., BORTOLUZZI, D., CASTELLI, E., CAVALLERI, A., CESARINI, A., CRUISE, A. M., DANZMANN, K., DE DEUS SILVA, M., DIEPHOLZ, I., DIXON, G., DOLESI, R., FERRAIOLI, L., FERRONI, V., FITZSIMONS, E. D., FRESCHI, M., GESA, L., GIBERT, F., GIARDINI, D., GIUSTERI, R., GRIMANI, C., GRZYMISCH, J., HARRISON, I., HEINZEL, G., HEWITSON, M., HOLLINGTON, D., HOYLAND, D., HUELLER, M., INCHAUSPÉ, H., JENNRICH, O., JETZER, P., KARNESIS, N., KAUNE, B., KORSAKOVA, N., KILLOW, C. J., LOBO, J. A., LLORO, I., LIU, L., LÓPEZ-ZARAGOZA, J. P., MAARSCHALKERWEERD, R., MANCE, D., MESHKSAR, N., MARTÍN, V., MARTIN-POLO, L., MARTINO, J., MARTIN-PORQUERAS, F., MATEOS, I., MCNAMARA, P. W., MENDES, J., MENDES, L., NOFRARIAS, M., PACZKOWSKI, S., PERREUR-LLOYD, M., PETITEAU, A., PIVATO, P., PLAGNOL, E., RAMOS-CASTRO, J., REICHE, J., ROBERTSON, D. I., RIVAS, F., RUSSANO, G., SLUTSKY, J., SOPUERTA, C. F., SUMNER, T., TEXIER, D., THORPE, J. I., VETRUGNO, D., VITALE, S., WANNER, G., WARD, H., WASS, P. J., WEBER, W. J., WISSEL, L., WITTCHEN, A., and ZWEIFEL P. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz. Physical Review Letters, 120(6), 061101 (2018) |
| [16] | BAGHI, Q., KORSAKOVA, N., SLUTSKY, J., CASTELLI, E., KARNESIS, N., and BAYLE, J. B. Detection and characterization of instrumental transients in LISA Pathfinder and their projection to LISA. Physical Review D, 105(4), 042002 (2022) |
| [17] | LIU, Y. X., LI, Y., WANG, P. C., and ZHANG, Y. H. Constrained nonlinear high-efficiency model predictive technics for test mass capture. Advances in Space Research, 72(2), 180–199 (2023) |
| [18] | WANG, Y. K., CHEN, Y. J., CHEN, T., WEI, Z. T., and TAYEBI, J. Adaptive control for test mass capture and drag-free mode in drag-free satellite. IEEE Transactions on Aerospace and Electronic Systems (2025) https://doi.org/10.1109/TAES.2025.3575552 |
| [19] | LIN, M. P., ZHANG, J. X., and HE, Y. C. Minimum-time control for the test mass release phase of drag-free spacecraft. Space: Science & Technology, 4, 0151 (2024) |
| [20] | LIAN, X. B., ZHANG, J. X., CHANG, L. T., SONG, J. N., and SUN, J. Test mass capture for drag-free satellite based on RBF neural network adaptive sliding mode control. Advances in Space Research, 69(2), 1205–1219 (2022) |
| [21] | INCHAUSPE, H., HEWITSON, M., SAUTER, O., and WASS, P. New LISA dynamics feedback control scheme: common-mode isolation of test mass control and probes of test-mass acceleration. Physical Review D, 106(2), 022006 (2022) |
| [22] | YAN, H., YEH, H. C., and MAO, Q. L. High precision six-degree-of-freedom interferometer for test mass readout. Classical and Quantum Gravity, 39(7), 075024 (2022) |
| [23] | WU, S. F., SUN, X. Y., ZHANG, Q. Y., and XIANG, Y. Advances in frontier research of space gravitational wave detection spacecraft platform system. Journal of Deep Space Exploration, 10(3), 233–246 (2023) |
| [24] | MAO, X. Y., WANG, W. B., and GAO, Y. Precise orbit determination for low Earth orbit satellites using GNSS: observations, models, and methods. Astrodynamics, 8(3), 349–374 (2024) |
| [25] | WANG, J. H., ZHANG, J. X., MENG, Y. H., SONG, J. N., and YANG, L. Review of formation dynamics and control technology of space-borne gravitational wave detection system (in Chinese). Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(1), 156–161 (2021) |
| [26] | BASILE, F. Modeling and Design for the Attitude Control Phase of the LISA Drag-Free Mission, Ph. D. dissertation, Politecnico di Torino (2019) |
| [27] | GATH, P., SCHULTE, H. R., WEISE, D., and JOHANN, U. Drag free and attitude control system design for the LISA science mode. AIAA Guidance, Navigation and Control Conference and Exhibits, American Institute of Aeronautics and Astronautics, South Carolina (2007) |
| [28] | FRANCESCO, L. Precise Control of LISA with Quantitative Feedback Theory, M. Sc. dissertation, Delft University of Technology (2019) |
| [29] | VIDANO, S., NOVARA, C., COLANGELO, L., and GRZYMISCH, J. The LISA DFACS: a nonlinear model for the spacecraft dynamics. Aerospace Science and Technology, 107, 106313 (2020) |
| [30] | SCHLEICHER, A., ZIEGLER, T., SCHUBERT, R., BRANDT, N., BERGNER, P., JOHANN, U., FICHTER, W., and GRZYMISCH, J. In-orbit performance of the LISA Pathfinder drag-free and attitude control system. CEAS Space Journal, 10, 471–485 (2018) |
| [31] | MAGHAMI, P. G., O'DONNELL, J. R., HSU, O. H., ZIEMER, J. K., and DUNN, C. E. Drag-free performance of the ST7 disturbance reduction system flight experiment on the LISA Pathfinder. International ESA Conference on Guidance, Navigation & Control Systems, European Space Agency, Salzburg (2017) |
| [32] | NOFRARIAS, M., ANTONUCCI, F., ARMANO, M., AUDLEY, H., AUGER, G., BENEDETTI, M., BINETRUY, P., BOGENSTAHL, J., BORTOLUZZI, D., BRANDT, N., and CALENO, M. State space modelling and data analysis exercises in LISA Pathfinder. Arxiv Preprint, (2013) |
| [1] | ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ABERNATHY, M. R., ACERNESE, F., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X., and ADYA, V. B. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), 061102 (2016) |
| [2] | AASI, J., ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ABERNATHY, M. R., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X., and ADYA, V. B. Advanced LIGO. Classical and Quantum Gravity, 32(7), 074001 (2015) |
| [3] | AMARO-SEOANE, P., AUDLEY, H., BABAK, S., BAKER, J., BARAUSSE, E., BENDER, P., BERTI, E., BINETRUY, P., BORN, M., BORTOLUZZI, D., and CAMP, J. Laser interferometer space antenna. Arxiv Preprint, (2017) |
| [4] | KARNESIS, N., STERGIOULAS, N., PAPPAS, G., ANASTOPOULOS, C., ANTONIADIS, J., APOSTOLATOS, T., BASILAKOS, S., DESTOUNIS, K., ARETI, E., LUKES-GERAKOPOULOS, G., and GOURGOULIATOS, K. N. The laser interferometer space antenna mission in Greece white paper. International Journal of Modern Physics D, 33, 2450027 (2024) |
| [5] | RAJAMUTHUKUMAR, A. S., KOROL, V., STEGMANN, J., PREECE, H., PAKMOR, R., JUSTHAM, S., TOONEN, S., and DE MINK, S. E. The role of triple evolution in the formation of LISA double white dwarfs. Arxiv Preprint, (2025) |
| [6] | JIN, G. Program in space detection of gravitational wave in Chinese Academy of Sciences. Journal of Physics: Conference Series, 840, 012009 (2017) |
| [7] | LUO, J. A brief introduction to the TianQin project (in Chinese). Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(1), 1–19 (2021) |
| [8] | LUO, Z. R., ZHANG, M., and WU, Y. L. Recent status of Taiji program in China. Chinese Journal of Space Science, 42(4), 536–538 (2022) |
| [9] | LUO, Z. R., ZHANG, M., JIN, G., WU, Y. L., and HU, W. R. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission. Journal of Deep Space Exploration, 7(1), 3–10 (2020) |
| [10] | ANTONUCCI, F., ARMANO, M., AUDLEY, H., AUGER, G., BENEDETTI, M., BINETRUY, P., BOGENSTAHL, J., BORTOLUZZI, D., BOSETTI, P., BRANDT, N., and CALENO, M. The LISA Pathfinder mission. Classical and Quantum Gravity, 29(12), 124014 (2012) |
| [11] | GATH, P. Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, Weapons Systems Evaluation Group Research Memorandum, National Aeronautics and Space Administration, U. S. A. (1959) |
| [12] | GIULICCHI, L., WU, S. F., and FENAL, T. Attitude and orbit control systems for the LISA Pathfinder mission. Aerospace Science and Technology, 24(1), 283–294 (2013) |
| [13] | JIAO, B. H., LIU, Q. F., DANG, Z. H., YUE, X. K., ZHANG, Y. H., XIA, Y. Q., DUAN, L., HU, Q. L., YUE, C. L., WANG, P. C., GUO, M., DUAN, Z. S., CUI, B., ZHANG, C., and SHAO, X. D. A review on DFACS (I): system design and dynamics modeling. Chinese Journal of Aeronautics, 37(5), 92–119 (2024) |
| [33] | KOSUGE, K. and KOJIMA, H. Prediction and experimental verification of tether net entanglement for space debris capture. Astrodynamics, 8(2), 223–236 (2024) |
| [34] | MERKOWITZ, S. M., HAILE, W. B., CONKEY, S., KELLY, W., and PEABODY, H. Self-gravity modelling for LISA. Classical and Quantum Gravity, 22(10), 395–402 (2005) |
| [35] | VIDANO, S., NOVARA, C., PAGONE, M., and GRZYMISCH, J. The LISA DFACS: model predictive control design for the test mass release phase. Acta Astronautica, 193, 731–743 (2022) |
| [36] | HUELLER, M. Geodesic Motion of LISA Test Masses: Development and Testing of Drag-Free Position Sensors, Ph. D. dissertation, University of Trento (2003) |
| [37] | MANCE, D. Development of Electronic System for Sensing and Actuation of Test Mass of the Inertial Sensor LISA, Ph. D. dissertation, University of Split (2012) |
| [38] | LAN, J. W., GUI, L. Q., LANG, L., MA, H., ZHU, S., and HUANG, Q. L. High-precision capacitive displacement sensor for gravitational wave detection: sensitive probe modeling, analysis, and optimization. IEEE Sensors Journal, 24(8), 12514–12527 (2024) |
| [1] | Yiheng YANG, Kai ZHANG, Zhihua CHEN, Bin LI. Distributionally robust model predictive control for constrained robotic manipulators based on neural network modeling [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2183-2202. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS