Applied Mathematics and Mechanics (English Edition) ›› 2003, Vol. 24 ›› Issue (10): 1233-1244.
• Articles • Previous Articles
YOU Yun-xiang, MIAO Guo-ping
Received:
2001-11-27
Revised:
2003-05-09
Online:
2003-10-18
Published:
2003-10-18
Supported by:
2010 MSC Number:
YOU Yun-xiang;MIAO Guo-ping. NUMERICAL METHOD FOR THE SHAPE RECONSTRUCTION OF A HARD TARGET. Applied Mathematics and Mechanics (English Edition), 2003, 24(10): 1233-1244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer,1992. [2] Colton D, Monk P. A novel method for solving inverse scattering problem for time-harmonic acoustic waves in the resonance region Ⅱ[J]. SIAM Appl Math, 1986,46(3) :506-523. [3] Colton D, Monk P. The numerical solution of the three-dimensional inverse scattering problem for time harmonic acoustic waves[J]. SIAM J Sci Comput, 1987,8(3) :278-291. [4] Kress R, Zinn A. On the numerical solution of the three-dimensional inverse obstacle scattering problem[J]. J Comput Appl Math,1992,42:49-61. [5] Angell T S, Kleinman R E, Kok B, et al. A constructive method for identification of an impenetrable scatterer[J]. Wave Motion, 1989,11:185-200. [6] Jones D S, Mao X Q. Inverse problems in hard acoustic scattering[J]. Inverse Problems, 1989,5:731-748. [7] Murch R D, Tan D C H,Wall D J N. Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Helmholtz problem[J]. Inverse Problens, 1988,4:1117-1 128. [8] Kirsch A. The domain derivative and two applications in inverse scattering theory[J]. Inverse Problems, 1993,9: 81-96. [9] Monch L A. A Newton method for solving the inverse scattering problem for a sound-hard obstacle[J]. Inverse Problems, 1996,12: 309-323. [10] Hohag T. Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and inverse scattering problem[J]. Inverse Problems, 1997,13: 1279-1299. [11] Oches J R. The limited aperture problem of inverse acoustic scattering: Dirichlet boundary conditions[J]. SIAM J Appl Math, 1987,47(6): 1320-1341. [12] Zinn A. On an optimization method for the full-and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle[J]. Inverse Problems, 1989,5:239-253. [13] Couchman L S. Inverse Neumann obstacle problem[J]. J Acoust Soc Am, 1998,104 (5) :2615-2621. [14] Kress R, Rundell W. Inverse obstacle scattering using reduced data[J]. SIAM J Appl Math, 1999,59(2) :442-454. [15] You Y X, Miao G P, Liu Y Z. A fast method for acoustic imaging of multiple three-dimensional objects[J]. J Acoust Soc Am ,2000,108(1) :31-37. [16] You Y X, Miao G P, Liu Y Z. A simple method for visualizing multiple three-dimensional objects from near-field data with point source excitation[J]. Acta Acustica ,2001,87(1) :1-10. [17] You Y X,Miao G P, Liu Y Z. A numerical method for solving the limited aperture problem in three-dimensional inverse obstacle scattering[J]. International of Nonlinear Science and Numerical Simulation, 2001,2: 29-42. [18] Miao G P, You Y X, Liu Y Z. A numerical method for the shape reconstruction problem in acoustic scattering[J]. Inverse Problems in Engineering, 2000,8(3): 229-249. [19] You Y X, Miao G P, Liu Y Z. A nonlinear optimization method for an inverse transmission problem[J]. Inverse Problems ,2001,17:421-435. [20] Colton D, Monk P. On a class of integral equations of the first kind in inverse scattering theory[J].SIAM J Appl Math, 1993,53(3) :847-860. [21] Reginska T. A regularization parameter in discrete ill-posed problems[J]. SIAM J Sci Comput,1996,17(3) :740-749. [22] ZHAO Feng-xhi. Quadratic Approximation Method in Numerical Optimization[M]. Beijing: Science Press, 1994. (in Chinese). |
[1] | Shujun YOU, Boling GUO. Global solution for quantum Zakharov equations [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 603-616. |
[2] | Shan JIANG, Longxiang DAI, Hao CHEN, Hongping HU, Wei JIANG, Xuedong CHEN. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. |
[3] | Lihua LIU, Chaolu TEMUER. Symmetry analysis of modified 2D Burgers vortex equation for unsteady case [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 453-468. |
[4] | W. PAULSEN, M. MANNING. Finding vibrations of inclined cable structures by approximately solving governing equations for exterior matrix [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1383-1402. |
[5] | A. K. VASHISHTH, A. DAHIYA, V. GUPTA. Generalized Bleustein-Gulyaev type waves in layered porous piezoceramic structure [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1223-1242. |
[6] | A. M. SIDDIQUI, H. ASHRAF, A. WALAIT, T. HAROON. On study of horizontal thin film flow of Sisko fluid due to surface tension gradient [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 847-862. |
[7] | Zhijie SHI, Yuesheng WANG, Chuanzeng ZHANG. Band structure calculations of in-plane waves in two-dimensional phononic crystals based on generalized multipole technique [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(5): 557-580. |
[8] | Wancheng SHENG;Ying ZENG. Generalized δ-entropy condition to Riemann solution for Chaplygin gas in traffic flow [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 353-364. |
[9] | Yinshan YUN;Chaolu TEMUER. Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 365-378. |
[10] | Chao MIN;Nanjing HUANG;Zhibin LIU;Liehui ZHANG. Existence of solutions for implicit fuzzy differential inclusions [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 401-416. |
[11] | Xue-hui CHEN;Lian-cun ZHENG;Xin-xin ZHANG. MHD flow of power-law fluid on moving surface with power-law velocity and special injection/blowing [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1555-1564. |
[12] | Man-li YANG;Zhi-ming LU;Yu-lu LIU. Self-similar behavior for multicomponent coagulation [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1353-1360. |
[13] | Jun GAO;Ji-sheng LUO. Mode decomposition of nonlinear eigenvalue problems and application in flow stability [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 667-674. |
[14] | H. YASMIN;T. HAYAT;A. ALSAEDI;H. H. ALSULAMI. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary condition [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 697-716. |
[15] | ZHANG Yan;LIN Ping;SI Xin-Hui. Perturbation solutions for asymmetric laminar flow in porous channel with expanding and contracting walls [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(2): 203-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||