[1] Ortega T, Sanz-Serma J M. Nonlinear sta bility and convergence of finite-difference methods for the "Good" Boussinesq equation[J]. Numer Math,1990,58(3):215-229.
[2] Manoranjan V S, Mitchell A R, Morris J L L. Numerical solu tions of the "Good" Boussinesq equation[J]. SIAM J Sci Stat Comput,1984, 5(4):946-957.
[3] Manoranjan V S, Ortega T, Sanz-Serma J M. Solution and ant i-soluti on interactions in the "Good" Boussinesq equation[J]. J Math Phys,1988, 29(9):1964-1968.
[4] FENG Kang, Qin M Z. The symplectic methods for the computa tion of Hamiltonian equations[A]. In: ZHU You-lan, GUO Ben-yu Eds. Proc of 1 -st C hinese Cong.on Numerical Methods of PDE's Shanghai, 1986, Lecture Notes in Ma th[C]. No 1279,Berlin: Springer,1987,1-37.
[5] FENG Kang. On difference schemes and symplectic geometry[A]. In: FENG Kang Ed. Proceeding of the 1984 Beijing Symposium on Differentia l Geometry and Differential Equations, Computation of Partial Differential Equations[C]. Beijing: Science Press,1985,42-58.
[6] FENG Kang. Difference schemes for Hamiltonian formulism an d symplecti c geometry[J]. J Comput Math,1986,4(3):279-289.
[7] QIN Meng-zhao, Zhu W J. Construction of symplectic schem es for wave equa tions via hyperbolic functions sinh(x),cosh(x),tanh(x)[J]. Compu ters Math Applic,1993,26(8):1-11.
[8] Bridges TH J, Reich S. Multi-symplectic integrators: numer ical sch emes for Hamiltonian PDEs that conserve symplecticity[R].
[9] Bridges TH J. Multi-symplectic structures and wave propaga tion[J]. Math Proc Cam Phil Soc,1997,121(2):147-190.
[10] Abbott M B, Basco D K. Computational Fluid Dynamics[M]. Lon don: Longman Scientific & Technical,1989.
[11] Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wav e equations[J]. J Comput Phys,2000,157(5):473-499. |