[1] Potapov V D. Stability of compressed viscolelastic orthotropic shells[J]. J Appl Mech and Tech Phy, 1978,18(4):586-592. [2] Minakova N I, Timakov V N. Axisymmetric stability of piecewise homogeneous viscoelastic shell acted on by the time-dependent uniform external pressure[J]. Mech Solids, 1978,13(1): 134-138. [3] Drozdov A D. Stability of viscoelastic shells under periodic and stochastic loading[J]. Mech Res Commun, 1993,20(6):481-486. [4] Brotskaya V Y, Milanovich O A, Minakova N I. Mathematical modeling of stability of a viscoelastic shell with nonequal curvatures[J]. Mech Solids, 1995,30(4): 139-145. [5] DING Rui. The dynamical analysis of viscoelastic structures[D]. Ph D Thesis. Lanzhou: Lanzhou University, 1997. [6] CHENG Chang-jun, ZHU Zheng-you. Buckling and Bifurcation in Structures [M]. Lanzhou:Lanzhou University Press, 1991. (in Chinese) [7] CHENG Chang-jun, ZHANGNeng-hui. Variational principles on static-dynamic analysis of viscoelastic thin plates with applications[J]. Int J Solids Struct, 1998,35(33):4491-4505. [8] ZHANG Neng-hui, CHENG Chang-jun. Non-linear mathematical model of viscoelastic thin plates with applications [J]. Comput Methods Appl Mech Engng, 1998,165 (4): 307-319. [9] CHENG Chang-jun, ZHANG Neng-hui. Chaotic and hyperchaotic behavior of viscoelastic rectangular plates[J]. Acta Mechanica Sinica, 1998,30(6):690-699. (in Chinese) [10] XU Zhi-lun. The Theory of Elasticity [M]. Beijing: High Education Press, 1988. (in Chinese) [11] Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative systems[J].Prog Theor Phys, 1979,61(12): 1605-1615. [12] Kubicek M, Marek M. Computational Methods in Bifurcation Theory and Dissipative Structures [M]. New York: Springer-Verlag,1983. |