[1] Anderreck C D, Liu S S, Swinney H L. Flow regimes in a circular Couette system with independent rotating cylinders[J]. J Fluid Mech, 1986,164(1): 155-183.
[2] Yasusi Takada. Quasi-periodic state and transition to turbulence in a rotating Couette system[J]. J Fluid Mech, 1999,389(1):81-99.
[3] Coughlin K T, Marcus P S, Tagg R P, et al. Distinct quasiperiodic modes with like symmetry in a rotating fluid[J]. Phys Rev Lett, 1991, 66(1):1161-1164.
[4] Meincke O, Egbers C. Routes into chaos in small and wide gap Taylor-Coutte flow[J]. Phys Chem Earth B, 1999,24(5):467-471.
[5] Takeda Y, Fischer W E, Sakakibara J. Messurement of energy spectral density of a flow in a rotating Couette system[J]. Phys Rev Lett, 1993,70(1):3569-3571.
[6] Wimmer M. Experiments on the stability of viscous flow between two concentric rotating spheres[J]. J Fluid Mech, 1980,103(1): 117-131.
[7] Taylor G I. Stability of a viscous liquid contained between two rotating cylinders[J]. Phil Trans Roy Soc London A, 1923,223(1): 289-343.
[8] LI Kai-tai, HUANG Ai-xiang. The Finite Element Method and Its Application[M]. Xi'an: Xi'an Jiaotong University Press, 1988, 320-321. (in Chinese)
[9] LIU Shi-da, LIU Shi-kuo. The Special Function[M]. Beijing: China Meteorological Press, 1988, 202-203. (in Chinese)
[10] YANG Ying-chen. Mathematical Physics Equation and Special Function[M]. Beijing: National Defence Industry Press, 1991, 160-162. (in Chinese)
[11] XIAO Shu-tie, JU Yu-ma, LI Hai-zhong. Algebra and Geometry[M]. Beijing: Higher Education Publishing House, 2000, 198-199. (in Chinese)
[12] WANG Li-zhou, LI Kai-tai. Spectral Galerkin approximation for nonsingular solution branches of the Navier-Stokes equations[J]. Journal of Computation Mathematics, 2002, 24(1): 39-52. (in Chinese)
[13] Brezzi F, Rappaz J, Raviart P A. Finite dimensional approximation of nonlinear problem-Part Ⅰ:branches of nonsingular solution[J]. Numer Math, 1980,36(1): 1-25. |