[1] Gelfand I M. Some problems in the theory of quasilinear equations[J]. Uspehi Mat Nauk, 1959, 14(1):87-158.
[2] Parter S. Solutions of differential equations arising in chemical reactor processes[J]. SIAM J Appl Math, 1974,26(3):687-716.
[3] Bebernes J W, Kassoy D R. A mathematical analysis of blowup for thermal reactions-the inhomo geneous case[J]. SIAM J Appl Math, 1981,40(2):476-484.
[4] Aronson D, Crandall M G, Peletier L A. Stabilization of solutions of a degenerate nonlinear diffu sion problem[J]. Nonlinear Anal, 1982,6(10): 1001-1022.
[5] Chio Y S. A singular boundary value problem arising from near-ignition analysis of flame structure[J]. Differential Integral Equatiors, 1991,4(5):891-895.
[6] Fink A M, Gatica J A, Hemandez G E. Eigenvalue of generalized Gelfand models[J]. Nonlinear Anal, 1993,20(12): 1453-1468.
[7] WANG Hai-yan. On the existence of positive solution for semilinear elliptic equations in annulus[J]. J Differential Equations, 1994,109(1):1-7.
[8] Henderson J, WANG Hai-yan. Positive solutions for nonlinear eigenvalue problems[J]. J Math Anal Appl, 1997,208(1):252-259.
[9] Hai D D. Positive solutions to a class of elliptic boundary value problems[J]. J Math Anal Appl, 1998,227(1):195-199.
[10] Cac N P, Gatica J A, LI Yi. Positive solutions to semilinear problems with coefficient that changes sign[J]. Nonlinear Anal, 1999,37(4):501-520.
[11] JIANG Xiu-fen, YAO Qing-liu. An existence theorem of positive solution for a semilinear two point BVP with change sign[J]. Mathematica Applicata, 2001,14(3):68-71.
[12] YAO Qing-liu. Positive solution of two-point boundary value problem for classical Emden equation with coefficient that changes sign[J]. Acta Analysis Functionalis Applicata, 2001,3(2):107-111. |