[1] Astarita, G. and Marrucci, G. Principles of Non Newtonian Fluid Mechanics, McGraw-Hill Press, New York (1974)
[2] Schlichting, H. Boundary Layer Theory, McGraw-Hill Press, New York (1979)
[3] Bohme, G. Non-Newtonian Fluid Mechanics (North-Holland Series in Applied Mathematics and Mechanics), Elsevier, Amsterdam (1987)
[4] Astin, J., Jones, R. S., and Lockyer, P. Boundary layers in non-Newtonian fluids. Journal de Méchanics, 12, 527-539 (1973)
[5] Denier, J. P. and Dabrowski, P. On the boundary-layer equations for powerlaw fluids. Proceedings of the Royal Society of London A, 460, 3143-3158 (2004)
[6] Lu, C. Q. and Zheng, L. C. Similarity solutions of a boundary layer problem in power law fluids through a moving flat plate. International Journal of Pure and Applied Mathematics, 13, 143-166
[7] Zheng, L., Su, X., and Zhang, X. Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium. International Journal of Pure and Applied Mathematics, 19, 541-552 (2005)
[8] Guedda, M. Similarity solutions of differential equations for boundary layer approximations in porous media. Journal of Applied Mathematics and Physics, 56, 749-762 (2005)
[9] Guedda, M. Boundary-layer equations for a power-law shear driven flow over a plane surface of non-Newtonian fluids. Acta Mechanica, 202, 205-211 (2009)
[10] Guedda, M. and Hammouch, Z. Similarity flow solutions of a non-Newtonian power-law fluid flow. International Journal of Nonlinear Science, 6, 255-264 (2008)
[11] Nachman, A. and Taliaferro, S. Mass transfer into boundary-layers for power-law fluids. Proceedings of the Royal Society of London A, 365, 313-326 (1979)
[12] Ece, M. C. and Büyük, E. Similarity solutions for free convection to power-law fluids from a heated vertical plate. Applied Mathematics Letters, 15, 1-5 (2002)
[13] Liao, S. J. A challenging nonlinear problem for numerical techniques. Journal of Computational Applied Mathematics, 181, 467-472 (2005)
[14] Su, X., Zheng, L., and Feng, J. Approximate analytical solutions and approximate value of skin friction coefficient for boundary layer of power law fluids. Applied Mathematics and Mechanics (English Edition), 29, 1215-1220 (2008) DOI 10.1007/s10483-008-0910-4
[15] Bognár, G. Similarity solution of a boundary layer flow for non-Newtonian fluids. International Journal of Nonlinear Sciences and Numerical Simulation, 10, 1555-1566 (2010)
[16] Howell, T. G., Jeng, D. R., and de Witt, K. J. Momentum and heat transfer on a continuous moving surface in a power-law fluid. International Journal of Heat Mass Transfer, 40, 1853-1861 (1997)
[17] Arnold, V. I. Ordinary Differential Equations, MIT Press, Cambridge (1978)
[18] Coddington, E. A. and Levinson, N. Theory of Ordinary Differential Equations, Krieger Publishing Company, Malabar (1984) |