[1] |
M. ABBASI GAVARI, M. R. HOMAEINEZHAD.
Nonlinear dynamic modeling of planar moving Timoshenko beam considering non-rigid non-elastic axial effects
[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 479-496.
|
[2] |
Shaopeng WANG, Jun HONG, Dao WEI, Gongye ZHANG.
Bending and wave propagation analysis of axially functionally graded beams based on a reformulated strain gradient elasticity theory
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1803-1820.
|
[3] |
Andi LAI, Bing ZHAO, Xulong PENG, Chengyun LONG.
Effects of local thickness defects on the buckling of micro-beam
[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 729-742.
|
[4] |
M. H. YAS, S. RAHIMI.
Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets
[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1209-1226.
|
[5] |
N. V. VIET, W. ZAKI, Quan WANG.
Free vibration characteristics of sectioned unidirectional/bidirectional functionally graded material cantilever beams based on finite element analysis
[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1787-1804.
|
[6] |
Jin ZENG, Hui MA, Kun YU, Zhitao XU, Bangchun WEN.
Coupled flapwise-chordwise-axial-torsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1053-1082.
|
[7] |
Hu DING, Minhui ZHU, Liqun CHEN.
Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 911-924.
|
[8] |
M. FARAJI-OSKOUIE, A. NOROUZZADEH, R. ANSARI, H. ROUHI.
Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(6): 767-782.
|
[9] |
Qiang LYU, Jingjing LI, Nenghui ZHANG.
Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 549-562.
|
[10] |
Youqi TANG, Erbao LUO, Xiaodong YANG.
Complex modes and traveling waves in axially moving Timoshenko beams
[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(4): 597-608.
|
[11] |
Xiaodong YANG, Shaowen WANG, Wei ZHANG, Zhaohong QIN, Tianzhi YANG.
Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method
[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(10): 1425-1438.
|
[12] |
Luyu SHEN, Changgen LU.
Local receptivity in non-parallel boundary layer
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(7): 929-940.
|
[13] |
Xiao YANG, Jin HUANG, Yu OUYANG.
Bending of Timoshenko beam with effect of crack gap based on equivalent spring model
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(4): 513-528.
|
[14] |
Luyu SHEN, Changgen LU.
Boundary-layer receptivity under interaction of free-stream turbulence and localized wall roughness
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 349-360.
|
[15] |
M. AREFI.
Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 289-302.
|