[1] Hashin, Z. Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids, 50(12), 2509-2537(2002)
[2] Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53(7), 1574-1596(2005)
[3] Chen, T., Dvorak, G. J., and Yu, C. C. Size-dependent elastic properties of unidirectional nanocomposites with interface stresses. Acta Mechanica, 188(1/2), 39-54(2007)
[4] Quang, H. L. and He, Q. C. Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Archive of Applied Mechanics, 79(3), 225-248(2009)
[5] Huang, R. C. and Chen, Y. Q. Effect of residual interface stress on effective thermal expansion coefficient of particle-filled thermoelasticnanocomposite. Applied Mathematics and Mechanics (English Edition), 32(11), 1377-1388(2011) DOI 10.1007/s10483-011-1508-9
[6] Xu, Y., He, Q. C., and Gu, S. T. Effective elastic moduli of fiber-reinforced composites with interfacial displacement and stress jumps. International Journal of Solids and Structures, 80, 146-157(2016)
[7] Chen, Y. Q., Zhang, Z. G., Huang, R. C., and Huang, Z. P. Effect of residual interface stress on thermo-elastic properties of unidirectional fiber-reinforced nanocomposites. International Journal of Mechanical Sciences, 113, 133-147(2016)
[8] Hashin, Z. Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials, 8(4), 333-348(1990)
[9] Dai, L. H., Huang, Z. P., and Wang, R. An explicit expression of the effective moduli for composite materials filled with coated inclusions. Acta Mechanica Sinica, 14(1), 37-52(1998)
[10] Garboczi, E. J. and Berryman, J. G. Elastic moduli of a material containing composite inclusions:effective medium theory and finite element computations. Mechanics of Materials, 33(8), 455-470(2001)
[11] Wu, Y. M., Huang, Z. P., Zhong, Y., and Wang, J. Effective moduli of particle-filled composite with inhomogeneous interphase:part I, bounds. Composites Science and Technology, 64(9), 1345-1351(2004)
[12] Zhong, Y., Wang, J., Wu, Y. M., and Huang, Z. P. Effective moduli of particle-filled composite with inhomogeneous interphase:part Ⅱ, mapping method and evaluation. Composites Science and Technology, 64(9), 1353-1362(2004)
[13] Shen, L. and Li, J. Homogenization of a fiber/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 461(2057), 1475-1504(2005)
[14] Lombardo, N. Effect of an inhomogeneous interphase on the thermal expansion coefficient of a particulate composite. Composites Science and Technology, 65(14), 2118-2128(2005)
[15] Sevostianov, I. and Kachanov, M. Effect of interphase layers on the overall elastic and conductive properties of matrix composites, applications to nanosize inclusion. International Journal of Solids and Structures, 44(3), 1304-1315(2007)
[16] Duan, H. L., Yi, X., Huang, Z. P., and Wang, J. A unified scheme for prediction of effective moduli of multiphase composites with interface effects, part I:theoretical framework. Mechanics of Materials, 39(1), 81-93(2007)
[17] Nguyen, T. K. and Pham, D. C. Equivalent-inclusion approach and effective medium estimates for elastic moduli of two-dimensional suspensions of compound inclusions. Philosophical Magazine, 94(36), 4138-4156(2014)
[18] Chen, Y. Q., Huang, R. C., and Huang, Z. P. Effect of residual interface stresses on effective specific heats of multiphase thermoelastic nanocomposites. Acta Mechanica, 225(4/5), 1107-1119(2014)
[19] Paulino, G. H., Yin, H. M., and Sun, L. Z. Micromechanics-based interfacial debonding model for damage of functionally graded materials with particle interactions. International Journal of Damage Mechanics, 15(3), 267-288(2006)
[20] Liu, H. T., Sun, L. Z., and Ju, J. W. Elastoplastic modeling of progressive interfacial debonding for particle-reinforced metal-matrix composites. Acta Mechanica, 181(1), 1-17(2006)
[21] Huang, Z. P. and Sun, L. Size-dependent effective properties of a heterogeneous material with interface energy effect:from finite deformation theory to infinitesimal strain analysis. Acta Mechanica, 190(1-4), 151-163(2007)
[22] Huang, Z. P. and Wang, J. Micromechanics of nanocomposites with interface energy effect. Handbook of Micromechanics and Nanomechanics (eds. Li, S. F. and Gao, X. L.), Taylor & Francis Group, Boca Raton, 303-348(2013)
[23] Huang, Z. P. and Wang, J. Micromechanics of nanocomposites with interface energy effect. Proceedings of IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials (eds. Bai, Y. L., Zheng, Q. S., and Wei, Y. G.), Springer, Beijing, 51-59(2007)
[24] Huang, Z. P. and Wang, J. A theory of hyperelasticity of multiphase media with surface/interface energy effect. Acta Mechanica, 182(3/4), 195-210(2006)
[25] Hill, R. Theory of mechanical properties of fibre-strengthened materials I, elastic behavior. Journal of the Mechanics and Physics of Solids, 12(4), 199-222(1964)
[26] Christensen, R. M. Mechanics of Composite Materials, John Wiley & Sons, New York (1979)
[27] Lurie, A. I. Three-dimensional Problems of Theory of Elasticity, Interscience Publisher, New York (1964)
[28] Dai, L. H., Huang, Z. P., and Wang, R. Explicit expressions for bounds for the effective moduli of multi-phased composites by the generalized self-consistent method. Composites Science and Technology, 59(11), 1691-1699(1999)
[29] Qu, J. and Cherkaoui, M. Fundamentals of Micromechanics of Solids, Wiley, Hoboken (2006) |