[1] SIGALAS, M. M. and ECONOMOU, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158, 377-382(1992) [2] KUSHWAHA, M. S., HALEVI, P., DOBRZYNSKI, L., and DJAFARI-ROUHANI, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025(1993) [3] GUO, X., LIU, H., ZHANG, K., and DUAN, H. L. Dispersion relations of elastic waves in two-dimensional tessellated piezoelectric phononic crystals. Applied Mathematical Modelling, 56, 65-82(2018) [4] ZHENG, H., ZHANG, C., and YANG, Z. A local radial basis function collocation method for band structure computation of 3D phononic crystals. Applied Mathematical Modelling, 77, 1954-1964(2020) [5] WU, L. Y., WU, M. L., and CHEN, L. W. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer. Smart Materials and Structures, 18(1), 015011(2009) [6] RONDA, S. and MONTERO DE ESPINOSA, F. Design of piezoelectric piston-like piezoelectric transducers based on a phononic crystal. Advances in Applied Ceramics, 117(3), 177-181(2017) [7] CERVERA, F., SANCHIS, L., SÁNCHEZ-PÉREZ, J. V., MARTÍNEZ-SALA, R., RUBIO, C., MESEGUER, F., LÓPEZ, C., CABALLERO, D., and SÁNCHEZ-DEHESA, J. Refractive acoustic devices for airborne sound. Physical Review Letters, 88(2), 023902(2002) [8] BENCHABANE, S., KHELIF, A., CHOUJAA, A., DJAFARI-ROUHANI, B., and LAUDE, V. Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 71(4), 570-575(2005) [9] WONG, E. W., SHEEHAN, P. E., and LIEBER, C. M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334), 1971-1975(1997) [10] WANG, Z. L. and SONG, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246(2006) [11] EBRAHIMI, F. and BARATI, M. R. Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures. Applied Mathematical and Mechanics (English Edition), 38(12), 1753-1772(2017) https://doi.org/10.1007/s10483-017-2291-8 [12] RAMPRASAD, R. and SHI, N. Scalability of phononic crystal heterostructures. Applied Physics Letters, 87(11), 101101(2005) [13] FARAJPOUR, A., GHAYESH, M. H., and FAROKHI, H. A review on the mechanics of nanostructures. International Journal of Engineering Science, 133, 231-263(2018) [14] TOUPIN, R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1), 385-414(1962) [15] MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1), 415-448(1962) [16] ERINGEN, A. C. Theory of Micropolar Elasticity, Springer, New York, 101-248(1999) [17] MINDLIN, R. D. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4), 417-438(1965) [18] ERINGEN, A. C. and EDELEN, D. G. B. On nonlocal elasticity. International Journal of Engineering Science, 10, 233-248(1972) [19] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710(1983) [20] LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298-313(2015) [21] LU, L., GUO, X. M., and ZHAO, J. Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12-24(2017) [22] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323(1975) [23] GURTIN, M. E. and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431-440(1978) [24] CHEN, A. L. and WANG, Y. S. Size-effect on band structures of nanoscale phononic crystals. Physica E:Low-dimensional Systems and Nanostructures, 44(1), 317-321(2011) [25] CHEN, A. L., WANG, Y. S., KE, L. L., GUO, Y. F., and WANG, Z. D. Wave propagation in nanoscaled periodic layered structures. Journal of Computational and Theoretical Nanoscience, 10(10), 2427-2437(2013) [26] CHEN, J. Y., GUO, J. H., and PAN, E. Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. Journal of Sound and Vibration, 400, 550-563(2017) [27] ZHANG, L. L., LIU, J. X., FANG, X. Q., and NIE, G. Q. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of MechanicsA/Solids, 46, 22-29(2014) [28] WU, B., ZHANG, C. L., CHEN, W. Q., and ZHANG, C. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Materials and Structures, 24(9), 095017(2015) [29] JIA, F., ZHANG, Z. C., ZHANG, H. B., FENG, X. Q., and GU, B. Shear horizontal wave dispersion in nanolayers with surface effects and determination of surface elastic constants. Thin Solid Films, 645, 134-138(2018) [30] ZHU, F., PAN, E., QIAN, Z. H., and WANG, Y. Dispersion curves, mode shapes, stresses and energies of SH and Lamb waves in layered elastic nanoplates with surface/interface effect. International Journal of Engineering Science, 142, 170-184(2019) [31] ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, New York (2002) [32] SEITZ, F., TURNBULL, D., and EHRENREICH, H. Solid State Physics, Academic Press, New York (1968) [33] MINDLIN, R. E. Progress in Applied Mechanics (the Prager Anniversary Volume), Macmillan, New York (1963) [34] TIERSTEN, H. F. Elastic surface waves guided by thin films. Journal of Applied Physics, 40(2), 770-789(1969) [35] SHENOY, V. B. Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Physical Review B, 71, 094104(2005) [36] HE, J. and ZHAO, J. L. Finite element simulations of surface effect on Rayleigh waves. AIP Advances, 8, 035006(2018) |