[1] NOVOSELOV, K. S., GEIM, A. K., MOROZOV, S. V., JIANG, D., ZHANG, Y., DUBONOS, S. V., GRIGORIEVA, I. V., and FIRSOV, A. A. Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669(2004) [2] BALANDIN, A. A., GHOSH, S., BAO, W., CALIZO, I., TEWELDEBRHAN, D., MIAO, F., and LAU, C. N. Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907(2008) [3] LEE, C., WEI, X., KYSAR, J. W., and HONE, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388(2008) [4] ZAMAN, I., PHAN, T. T., KUAN, H. C., MENG, Q., LA, L. T. B., LUONG, L., YOUSSF, O., and MA, J. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer, 52, 1603–1611(2011) [5] CHEN, J. H., JANG, C., XIAO, S., ISHIGAMI, M., and FUHRER, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3(4), 206–209(2008) [6] RAFIEE, M. A., RAFIEE, J., WANG, Z., SONG, H., YU, Z. Z., and KORATKAR, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 3(12), 3884–3890(2009) [7] LAYEK, R. K., SAMANTA, S., CHATTERJEE, D. P., and NANDI, A. K. Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer, 51, 5846–5856(2010) [8] MAITY, N., MANDAL, A., and NANDI, A. K. Hierarchical nanostructured polyaniline functionalized graphene/poly (vinylidene fluoride) composites for improved dielectric performances. Polymer, 103, 83–97(2016) [9] ABBASIPOUR, M., KHAJAVI, R., YOUSEFI, A. A., YAZDANSHENAS, M. E., and RAZAGHIAN, F. The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. Journal of Materials Science: Materials in Electronics, 28(21), 15942–15952(2017) [10] KE, L. L. and WANG, Y. S. Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures, 43(18-19), 5779–5798(2006) [11] LI, C. Y., ZHOU, Z. H., and DUAN, Z. P. Dynamic stress field around the mode III crack tip in an orthotropic functionally graded material. Applied Mathematics and Mechanics (English Edition), 21(6), 651–658(2000) https://doi.org/10.1007/BF02460184 [12] CAO, D. X., GAO, Y. H., YAO, M. H., and ZHANG, W. Free vibration of axially functionally graded beams using the asymptotic development method. Engineering Structures, 173, 442–448(2018) [13] WANG, Y. Q. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronautica, 143, 263–271(2018) [14] FENG, C., KITIPORNCHAI, S., and YANG, J. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Engineering Structures, 140, 110–119(2017) [15] YANG, B., KITIPORNCHAI, S., YANG, Y. F., and YANG, J. 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Applied Mathematical Modelling, 49, 69–86(2017) [16] WANG, Y., XIE, K., FU, T., and ZHANG W. A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads. Engineering with Computers (2021) https://doi.org/10.1007/s00366-020-01238-x [17] WU, H., ZHU, J., KITIPORNCHAI, S., WANG, Q., KE, L. L., and YANG, J. Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments. Composite Structures, 239, 112047(2020) [18] DONG, Y. H., LI, X. Y., GAO, K., LI, Y. H., and YANG, J. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dynamics, 99(2), 981–1000(2020) [19] WANG, J. F., CAO, S. H., and ZHANG, W. Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. European Journal of Mechanics A/Solids, 85, 104105(2021) [20] SHEN, H. S., REDDY, J. N., and YU, Y. Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments. Mechanics of Advanced Materials and Structures, 28(3), 260–270(2021) [21] WANG, Y., FENG, C., WANG, X., ZHAO, Z., SANTIUSTE-ROMERO, C., DONG, Y., and YANG, J. Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity. Applied Mathematical Modelling, 71, 298–315(2019) [22] LIU, D., KITIPORNCHAI, S., CHEN, W., and YANG, J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures, 189, 560–569(2018) [23] BLOORIYAN, S., ANSARI, R., DARVIZEH, A., GHOLAMI, R., and ROUHI, H. Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach. Applied Mathematics and Mechanics (English Edition), 40(7), 1001–1016(2019) http://doi.org/10.1007/s10483-019-2498-8 [24] YANG, S., HAO, Y., ZHANG, W., YANG, L., and LIU, L. Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory. Applied Mathematics and Mechanics (English Edition), 42(7), 981–998(2021) https://doi.org/10.1007/s10483-021-2747-9 [25] MAO, J. J. and ZHANG, W. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Composite Structures, 216, 392–405(2019) [26] STOLKEN, J. S. and EVANS, A. G. A microbend test method for measuring the plasticity length scale. Acta Materialia, 46(14), 5109–5115(1998) [27] CHONG, A. C. M. and LAM, D. C. C. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Materials Research, 14(10), 4103–4110(1999) [28] NIX, W. D. Mechanical-properties of thin-films. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 20(11), 2217–2245(1989) [29] ZHANG, L. W., ZHANG, Y., and LIEW, K. M. Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Applied Mathematical Modelling, 49, 691–704(2017) [30] ZHANG, Y., LI, G., and LIEW, K. M. Thermomechanical buckling characteristic of ultrathin films based on nonlocal elasticity theory. Composites Part B: Engineering, 153, 184–193(2018) [31] LIEW, K., ZHANG, Y., and ZHANG, L. Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges. Journal of Modeling in Mechanics and Materials, 1, 20160159(2017) [32] HOSSEINI, S. M. and ZHANG, C. Z. Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder using meshless GFD method: a modified micromechanical model. Engineering Analysis with Boundary Elements, 88, 80–92(2018) [33] HOSSEINI, S. M. Gaussian thermal shock-induced thermoelastic wave propagation in an FG multilayer hybrid nanocomposite cylinder reinforced by GPLs and CNTs. Thin-Walled Structures, 166, 108108(2021) [34] MAO, J. J., LU, H. M., ZHANG, W., and LAI, S. K. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Composite Structures, 236, 111813(2020) [35] SAHMANI, S. and AGHDAM, M. M. Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences, 131, 95–106(2017) [36] WANG, Y., FU, T., and ZHANG, W. An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: applications to dynamic stability analysis. Thin-Walled Structures, 160, 107400(2021) [37] JAVAHERI, R. and ESLAMI, M. R. Thermal buckling of functionally graded plates. AIAA Journal, 40(1), 162–169(2002) [38] LIU, C., KE, L. L., YANG, J., KITIPORNCHAI, S., and WANG, Y. S. Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates. Theoretical and Applied Mechanics Letters, 6(6), 253–267(2016) [39] LIU, C., KE, L. L., YANG, J., KITIPORNCHAI, S., and WANG, Y. S. Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mechanics of Advanced Materials and Structures, 25(15-16), 1252–1264(2018) [40] QUEK, S. and WANG, Q. On dispersion relations in piezoelectric coupled-plate structures. Smart Materials and Structures, 9(6), 859–867(2000) [41] SALEHI-KHOJIN, A. and JALILI, N. Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings. Composites Science and Technology, 68(6), 1489–1501(2008) |