[1] ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, Series A, 241, 376-396(1957) [2] ESHELBY, J. D. The elastic interaction of point defects. Acta Metallurgica, 3, 487-490(1955) [3] BIMBERG, D., GRUNDMANN, M., LEDENTSOV, N. N., RUVIMOV, S. S., WEMER, P., RICHTER, U., HEYDENREICH, J., USTINOV, V. M., KOPEV, P. S., and ALFEROV, Z. I. Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films, 267, 32-36(1995) [4] CLUZEAU, P., POULIN, P., JOLY, G., and NGUYEN, H. T. Interactions between colloidal inclusions in two-dimensional smectic-C* films. Physical Review E, 63, 031702(2001) [5] MUSEVIC, I., SKARABOT, M., TKALEC, U., RAVNIK, M., and ZUMER, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science, 313, 954-958(2006) [6] MURA, T. Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, Netherlands (1987) [7] LAU, K. H. and KOHN, W. Elastic interaction of two atoms adsorbed on a solid surface. Surface Science, 65, 607-618(1977) [8] ZHONG, Z. and MEGUID, S. A. On the elastic field of a shpherical inhomogeneity with an imperfectly bonded interface. Journal of Elasticity, 46, 91-113(1997) [9] KUKTA, R. V., LIU, P., and KOURIS, D. On the dependence of adatom interactions on strain. Journal of the Mechanics and Physics of Solids, 51, 2149-2167(2003) [10] HE, L. H. Elastic interaction between force dipoles on a stretchable substrate. Journal of the Mechanics and Physics of Solids, 56, 2957-2971(2008) [11] DUAN, H. L., WANG, J., and KARIHALOO, B. L. Theory of elasticity at the nanoscale. Advances in Applied Mechanics, 42, 1-68(2009) [12] TAO, F. M., ZHANG, M. H., and TANG, R. J. The interaction problem between the elastic line inclusions. Applied Mathematics and Mechanics (English Edition), 42(4), 847-852(2002) https://doi.org/10.1007/BF02436205 [13] KUSHCH, V. I., SHMEGERA, S. V., and BURYACHENKO, V. A. Interacting elliptic inclusions by the method of complex potentials. International Journal of Solids and Structures, 42, 5491-5512(2005) [14] NODA, N. A. and MATSUO, T. Singular integral equation method for interaction between elliptical inclusions. ASME Journal of Applied Mechanics, 65, 310-319(1998) [15] MOSCHOVIDIS, Z. A. and MURA, T. 2-ellipsoidal inhomogeneities by equivalent inclusion method. ASME Journal of Applied Mechanics, 42, 847-852(1975) [16] TANG, R. J., TAO, F. M., and ZHANG, M. H. Interaction between a rigid line inclusion and an elastic circular inclusion. Applied Mathematics and Mechanics (English Edition), 18(5), 441-448(1997) https://doi.org/10.1007/BF02453739 [17] QIAO, L., HE, L. H., and DING, K. W. Axisymmetric buckling of an elastic plate containing a circular inclusion with dilative eigenstrain. ASME Journal of Applied Mechanics, 78, 014503(2011) [18] QIAO, L., HE, L. H., and NI, Y. Local-buckling-induced elastic interaction between inclusions in a free-standing film. International Journal of Solids and Structures, 50, 3742-3747(2013) [19] LEE, J. K. and JOHNSON, W. C. Calculation of elastic strain field of a cuboidal precipitate in an anisotropic matrix. Physica Status Solidi, 46, 267-272(1978) [20] JOHNSON, W. C. and LEE, J. K. Elastic interaction energy of two spherical precipitates in an anisotropic matrix. Metallurgical Transactions A, 10, 1141-1149(1979) [21] KHACHATURYAN, A. G. Theory of Structural Transformations in Solids, Wiley, New York (1983) [22] ARDELL, A. J., NICHOLSO, R. B., and ESHELBY, J. D. On modulated structure of aged Ni-Al alloys. Acta Metallurgica, 14, 1295-1309(1966) [23] LEE, J. K. and JOHNSON, W. C. Elastic strain-energy and interactions of thin square plates which have undergone a simple shear. Scripta Metallurgica, 11, 477-484(1977) [24] LEO, P. H., SHIELD, T. W., and BRUNO, O. P. Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metallurgica et Materialia, 41, 2477-2485(1993) [25] LIN, P. H., TOBUSHI, H., TANAKA, K., HATTORI, T., and MAKITA, M. Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations. Journal of Intelligent Material Systems and Structures, 5, 694-701(1994) [26] ZHONG, Z., SUN, Q. P., and TONG, P. On the elastic axisymmetric deformation of a rod containing a single cylindrical inclusion. International Journal of Solids and Structures, 37, 5943-5955(2000) [27] ZHONG, Z. and SUN, Q. P. Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains. International Journal of Solids and Structures, 39, 5753-5765(2002) [28] ZHONG, Z., SUN, Q. P., and YU, X. B. Elastic solutions of a cylindrical rod containing periodically distributed inclusions with axisymmetric eigenstrains. Acta Mechanica, 166, 169-183(2003) [29] ROBINSON, R. D., SADTLER, B., DEMCHENKO, D. O., ERDONMEZ, C. K., WANG, L. W., and ALIVISATOS, A. P. Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317, 355-358(2007) [30] ZHANG, B., JUNG, Y., CHUNG, H. S., VAN VUGT, L., and AGARWAL, R. Nanowire transformation by size-dependent cation exchange reactions. Nano Letters, 10, 149-155(2010) [31] HUANG, C. W., CHEN, J. Y., CHIU, C. H., and WU, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Letters, 14, 2759-2763(2014) [32] FENTON, J. L., STEIMLE, B. C., and SCHAAK, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science, 360, 513-517(2018) [33] STEIMLE, B. C., FENTON, J. L., and SCHAAK, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science, 367, 418-424(2020) [34] LIN, Y. M. and DRESSELHAUS, M. S. Thermoelectric properties of superlattice nanowires. Physical Review B, 68, 075304(2003) [35] HU, M. and POULIKAKOS, D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Letters, 12, 5487-5494(2012) [36] DEMCHENKO, D. O., ROBINSON, R. D., SADTLER, B., ERDONMEZ, C. K., ALIVISATOS, A. P., and WANG, L. W. Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano, 2, 627-636(2008) [37] CAHN, J. W. and HILLIARD, J. E. Free energy of a nonuniform system, I:interfacial free energy. The Journal of Chemical Physics, 28, 258-267(1958) [38] BOYNE, A., DREGIA, S. A., and WANG, Y. Concurrent spinodal decomposition and surface roughening in thin solid films. Applied Physics Letters, 99, 063111(2011) [39] LU, Y. Y. and NI, Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mechanics of Materials, 91, 372-381(2015) [40] WANG, Y. U., JIN, Y. M., and KHACHATURYAN, A. G. Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid. Journal of Applied Physics, 92, 1351-1360(2002) [41] CHANG, L. G., LU, Y. Y., HE, L. H., and NI, Y. Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations. International Journal of Solids and Structures, 143, 73-83(2018) [42] CUI, Z. W., GAO, F., CUI, Z. H., and QU, J. M. A. second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys. Journal of Power Sources, 207, 150-159(2012a) [43] ZHANG, X. C., SHYY, W., and MARIE SASTRY, A. Numerical simulation of intercalationinduced stress in Li-ion battery electrode particles. Journal of The Electrochemical Society, 154, A910-A916(2007) [44] CUI, Z. W., GAO, F., and QU, J. M. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of Solids, 60, 1280-1295(2012) [45] YANG, W. Z., LIU, Q. C., YUE, Z. F., LI, X. D., and XU, B. X. Rotation of hard particles in a soft matrix. Journal of the Mechanics and Physics of Solids, 101, 285-310(2017) [46] WU, Y. Y., FAN, R., and YANG, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Letters, 2, 83-86(2002) [47] NICEWARNER-PENA, S. R., FREEMAN, R. G., REISS, B. D., HE, L., PENA, D. J., WALTON, I. D., CROMER, R., KEATING, C. D., and NATAN, M. J. Submicrometer metallic barcodes. Science, 294, 137-141(2001) |