[1] Bell, J. B. and Marcus, D. L. A second-order projection method for variable-density flows. Journal of Computational Physics, 101, 334-348(1992)
[2] Li, J., Renardy, Y. Y., and Renardy, M. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Physics of Fluids, 12, 269-282(2000)
[3] Hetzer, G. and Meir, A. On an interface problem with a nonlinear jump condition, numerical approximation of solutions. International Journal of Numerical Analysis and Modeling, 4, 519-530(2007)
[4] He, X. M., Lin, T., and Lin, Y. P. Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. International Journal of Numerical Analysis and Modeling, 8, 284-301(2010)
[5] He, X. M., Lin, T., and Lin, Y. P. Approximation capability of a bilinear immersed finite element space. Numerical Methods for Partial Differential Equations, 24, 1265-1300(2008)
[6] He, X. M., Lin, T., and Lin, Y. P. The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numerical Methods for Partial Differential Equations, 28, 312-330(2012)
[7] Chen, Z. M. and Zou, J. Finite element methods and their convergence for elliptic and parabolic interface problems. Numerische Mathematik, 79, 175-202(1998)
[8] Sinha, R. K. and Deka, B. A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems. Calcolo, 43, 253-278(2006)
[9] Sinha, R. K. and Deka, B. Finite element methods for semilinear elliptic and parabolic interface problems. Applied Numerical Mathematics, 59, 1870-1883(2009)
[10] Ming, P. B. and Shi, Z. C. Nonconforming rotated Q1 element for Reissner-Mindlin plate. Mathematical Models and Methods in Applied Science, 11, 1311-1342(2001)
[11] Lin, Q., Tobiska, L., and Zhou, A. H. Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation. IMA Journal of Numerical Analysis, 25, 160-181(2005)
[12] Hu, J., Man, H. Y., and Shi, Z. C. Constrained nonconforming rotated Q1 element for Stokes flow and planar elasticity. Mathematica Numerica Sinica, 27, 311-324(2005)
[13] Thomas, A., Serge, N., and Joachim, S. Crouzeix-Raviart type finite elements on anisotropic meshes. Numerische Mathematik, 89, 193-223(2001)
[14] Douglas, J., Jr., Santos, J. E., Sheen, D., and Ye, X. Nonconforming Galerkin methods based on quadrilateral elements for second-order elliptic problems. ESAIM:Mathematical Modelling and Numerical Analysis, 33, 747-770(1999)
[15] Brenner, S. C. and Scott, L. R. The Mathematical Theory of Finite Element Methods, Springer-Verlag, Berlin (1994)
[16] Cirault, V. and Raviart, P. A. Finite Element Methods for Navier-Stokes Equations, Theorem and Algorithms, Springer-Verlag, Berlin (1986)
[17] Shi, D. Y. and Xu, C. EQ1rot nonconforming finite element approximation to Signorini problem. Science China Mathematics, 56, 1301-1311(2013)
[18] Rannacher, R. and Turek, S. T. Simple nonconforming quadrilateral Stokes element. Numerical Methods for Partial Differential Equations, 8, 97-111(1992)
[19] Carey, G. An analysis of finite element equations and mesh subdivision. Computer Methods in Applied Mechanics and Engineering, 9, 165-179(1976)
[20] Taylor, R. L., Beresford, P. J., and Wilson, E. L. A nonconforming element for stress analysis. International Journal for Numerical Methods in Engineering, 10, 1211-1219(1976) |