[1] |
T. MUSHTAQ, A. RAUF, S. A. SHEHZAD, F. MUSTAFA, M. HANIF, Z. ABBAS.
Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory
[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1063-1076.
|
[2] |
N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP.
Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect
[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524.
|
[3] |
A. AHMED, M. KHAN, J. AHMED, A. HAFEEZ.
Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model
[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1195-1208.
|
[4] |
M. KHAN, A. AHMED, J. AHMED.
Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: modeling and simulation
[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(4): 667-680.
|
[5] |
G. C. SHIT, S. MUKHERJEE.
MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1269-1284.
|
[6] |
Xuyang SUN, Shaowei WANG, Moli ZHAO, Qiangyong ZHANG.
Numerical solution of oscillatory flow of Maxwell fluid in a rectangular straight duct
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1647-1656.
|
[7] |
Yongbo LIU, Yongjun JIAN.
Electroviscous effect on electromagnetohydrodynamic flows of Maxwell fluids in parallel plate microchannels
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(10): 1457-1470.
|
[8] |
M. PERALTA, O. BAUTISTA, F. MÉNDEZ, E. BAUTISTA.
Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials
[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 667-684.
|
[9] |
K. R. RAGHUNATHA, I. S. SHIVAKUMARA, B. M. SHANKAR.
Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer
[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 153-168.
|
[10] |
Yaqing LIU, Boling GUO.
Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 137-150.
|
[11] |
P. RANA, M. J. UDDIN, Y. GUPTA, A. I. M. ISMAIL.
Two-component modeling for non-Newtonian nanofluid slip flow and heat transfer over sheet: Lie group approach
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1325-1340.
|
[12] |
B. BIRA, T. R. SEKHAR.
Exact solutions to drift-flux multiphase flow models through Lie group symmetry analysis
[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1105-1112.
|
[13] |
T. HAYAT, T. MUHAMMAD, S. A. SHEHZAD, A. ALSAEDI.
Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model
[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(6): 747-762.
|
[14] |
A. A. AFIFY;M. J. UDDIN;M. FERDOWS.
Scaling group transformation for MHD boundary layer flow over permeable stretching sheet in presence of slip flow with Newtonian heating effects
[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1375-1386.
|
[15] |
S. ABBASBANDY;T. HAYAT;H. R. GHEHSAREH;A.ALSAEDI.
MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method
[J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(8): 921-930.
|