[1] Hemmert, W., Zenner, H. P., and Gummer, A. W. Three-dimensional motion of the organ of Corti. Biophysical Journal, 78, 2285-2297(2000)
[2] Matsui, T., Nakajima, C., Yamamoto, Y., Andoh, M., Iida, K., Murakoshi, M., Kumano, S., and Wada, H. Analysis of the dynamic behavior of the inner hair cell stereocilia by the finite element method. JSME International Journal, 49, 828-836(2006)
[3] Tilney, L. G. and Tilney, M. S. Functional organization of the cytoskeleton. Hearing Research, 22, 55-77(1986)
[4] You, L., Cowin, S. C., Schaffler, M. B., and Weinbaum, S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of Biomechanics, 34, 1375-1386(2001)
[5] Han, Y., Cowin, S. C., Schaffler, M. B., and Weinbaum, S. Mechanotransduction and strain amplification in osteocyte cell processes. Proceedings of the National Academy of Sciences of the United States of America, 101, 16689-16694(2004)
[6] Lin, H. W., Schneider, M. E., and Kachar, B. When size matters:the dynamic regulation of stereocilia lengths. Current Opinion in Cell Biology, 17, 55-61(2005)
[7] DeRosier, D. J., Tilney, L. G., and Egelman, E. Actin in the inner ear:the remarkable structure of the stereocilium. nature, 287, 291-296(1980)
[8] Tilney, L. G., Egelman, E. H., Derosier, D. J., and Saunder, J. C. Actin filaments, stereocilia, and hair cells of the bird cochlea, II:packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent. Journal of Cell Biology, 96, 822-834(1983)
[9] Pickles, J. O., Comis, S. D., and Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Research, 15, 103-112(1984)
[10] Zetes, D. E. and Steele, C. R. Fluid-structure interaction of the stereocilia bundle in relation to mechanotransduction. Journal of the Acoustical Society of America, 101, 3593-3601(1997)
[11] Duncan, R. K. and Grant, J. W. A finite-element model of inner ear hair bundle micromechanics. Hearing Research, 104, 15-26(1997)
[12] Eiichi Ishiyama, M. D. and Koichi Ishiyama, M. D. Atlas of the Inner Ear Morphology (in Japanese), Sozo Publishing, An Phu Ward, 9-10(2002)
[13] Hackney, C. M. and Furness, D. N. Mechanotransduction in vertebrate hair cells:structure and function of the stereociliary bundle. American Journal of Physiology, 268, 1-13(1995)
[14] Strelioff, D. and Flock, A. Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hearing Research, 15, 19-28(1984)
[15] Furness, D. N., Zetes, D. E., and Hackney, C. M. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stere-ocilia of mammalian cochlear hair cells. Proceedings of the Royal Society B:Biological Sciences, 264, 45-51(1997)
[16] Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. D., and Gillespie, P. G. High-resolution structure of hair-cell tip links. Proceedings of the National Academy of Sciences of the United States of America, 97, 13336-13341(2000)
[17] Tsuprun, V. and Santi, P. Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea. Journal of Histochemistry & Cytochemistry, 50, 493-502(2002)
[18] Ulfendahl, M., Flock, A., and Scarfone, E. Structural relationships of the unfixed tectorial membrane. Hearing Research, 151, 41-47(2001)
[19] Andoh, M. and Wada, H. Prediction of the characteristics of two types of pressure waves in the cochlea:Theoretical considerations. Journal of the Acoustical Society of America, 116, 417-425(2004)
[20] Tomotika, S. and Aoi, T. An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small reynolds numbers. Quarterly Journal of Mechanics & Applied Mathematics, 4, 401-406(1951)
[21] Duncan, R. K. and Grant, J. W. A finite-element model of inner ear hair bundle micromechanics. Hearing Research, 104, 15-26(1997) |