[1] Gupta, A. and Talha, M. Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 79, 1-14(2015)
[2] Eslami, M. R., Ziaii, A. R., and Ghorbanpour, A. Thermoelastic buckling of thin cylindrical shells based on improved stability equations. Journal of Thermal Stresses, 19(4), 299-315(1996)
[3] Eslami, M. R. and Javaheri, R. Buckling of composite cylindrical shells under mechanical and thermal loads. Journal of Thermal Stresses, 22(6), 527-545(1999)
[4] Eslami, M. R. and Shahsiah, R. Thermal buckling of imperfect cylindrical shells. Journal of Thermal Stresses, 24(1), 71-89(2001)
[5] Shahsiah, R. and Eslami, M. R. Thermal buckling of functionally graded cylindrical shell. Journal of Thermal Stress, 26(3), 277-294(2003)
[6] Shahsiah, R. and Eslami, M. R. Functionally graded cylindrical shell thermal instability based on improved Donnell equations. AIAA Journal, 41(41), 1819-1826(2012)
[7] Mirzavand, B., Eslami, M. R., and Shahsiah, R. Effect of imperfections on thermal buckling of functionally graded shells. AIAA Journal, 43(43), 2073-2076(2015)
[8] Wu, L. H., Jiang, Z. Q., and Liu, J. Thermoelastic stability of functionally graded cylindrical shells. Composite Structures, 70(1), 60-68(2005)
[9] Yaghoobi, H., Fereidoon, A., and Shahsiah, R. Thermal buckling of axially functionally graded thin cylindrical shell. Journal of Thermal Stresses, 34(12), 1250-1270(2011)
[10] Li, S. R. and Batra, R. C. Buckling of axially compressed thin cylindrical shells with functionally graded middle layer. Thin-Walled Structures, 44(10), 1039-1047(2006)
[11] Khazaeinejad, P., Najafizadeh, M. M., Jenabi, J., and Isvandzibaei, M. R. On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression. Journal of Pressure Vessel Technology, 132(6), 1-6(2010)
[12] Huang, H. W. and Han, Q. Buckling of imperfect functionally graded cylindrical shells under axial compression. European Journal of Mechanics A/Solids, 27(6), 1026-1036(2008)
[13] Huang, H. W., Han, Q., Feng, N. W., and Fan, X. J. Buckling of functionally graded cylindrical shells under combined loads. Mechanics of Advanced Materials and Structures, 18(5), 337-346(2011)
[14] Sun, J. B., Xu, X. S., and Lim, C. M. Buckling of functionally graded cylindrical shells under combined thermal and compressive loads. Journal of Thermal Stresses, 37(3), 340-362(2014)
[15] Sun, J. B., Xu, X. S., Lim, C. W., and Qiao, W. Y. Accurate buckling analysis for shear deformable FGM cylindrical shells under axial compression and thermal loads. Composite Structures, 123(5), 246-256(2015)
[16] Sofiyev, A. H. and Kuruoglu, N. Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures. Thin-Walled Structures, 78(78), 121-130(2014)
[17] Zhang, Y. Q., Huang, H. W., and Han, Q. Buckling of elastoplastic functionally graded cylindrical shells under combined compression and pressure. Composites:Part B, 69(69), 120-126(2015)
[18] Li, S. R., Wan, Z. Q., and Wang, X. Homogenized and classical expressions for static bending solutions for functionally graded material Levinson beams. Applied Mathematics and Mechanics (English Edition), 36(7), 895-910(2015) DOI 10.1007/s10483-015-1956-9 |